The Roots Hierarchy
 Exposition by William Gasarch and Erik Metz

1 Introduction

The main proof in this note is from Problems from the Book by Dospinescu and Andreescu.
We want to classify real numbers in terms of their complexity.

Def 1.1 Let $d \in \mathrm{~N}$.

1. $\mathrm{Z}_{d}[x]$ is the set of polynomials of degree d over \mathbf{Z} (the integers).
2. roots $_{d}$ is the set of roots of polynomials in $Z_{d}[x]$. Note that roots $_{1}=\mathbf{Q}$.

Clearly $\operatorname{roots}_{1} \subseteq \operatorname{roots}_{2} \subseteq \operatorname{roots}_{3} \subseteq \cdots$
We want to show that $\operatorname{roots}_{1} \subset \operatorname{roots}_{2} \subset \operatorname{roots}_{3} \subset \cdots$

2 The Hierarchy is Proper

We show that roots $_{2} \subset$ roots $_{3}$. All of the ideas to show $\operatorname{roots}_{d-1} \subset \operatorname{roots}_{d}$ are contained in the proof. The main method for the proof is taken from chapter 9 of Problems from the Book by Titu Andreescu and Gabriel Dospinescu.

Theorem 2.1 roots $_{2} \subset$ roots $_{3}$.

Proof: Clearly roots ${ }_{2} \subseteq$ roots $_{3}$. We show that $2^{1 / 3} \in$ roots $_{3}$ - roots ${ }_{2}$ which implies

$$
\operatorname{roots}_{2} \subset \operatorname{roots}_{3}
$$

Clearly $2^{1 / 3}$ is a root of $x^{3}-2=0$ and hence $2^{1 / 3} \in$ roots $_{3}$. We show that $2^{1 / 3} \notin \operatorname{roots}_{2}$ Assume, by way of contradiction, that there exists $a_{0}, a_{1}, a_{2} \in \mathbf{Z}$ such that

$$
a_{2}\left(2^{1 / 3}\right)^{2}+a_{1}\left(2^{1 / 3}\right)+a_{0}=0
$$

which is

$$
a_{2} \times 2^{2 / 3}+a_{1} \times 2^{1 / 3}+a_{0} \times 1=0
$$

We assume the following about $\left(a_{2}, a_{1}, a_{0}\right)$: They are not all even. If they are then divide each one by 2 to get a smaller poly over Z and use that.

Multiply this equation by $1,2^{1 / 3}, 2^{2 / 3}$ to get

$$
\begin{aligned}
& a_{2} \times 2^{2 / 3}+a_{1} \times 2^{1 / 3}+a_{0} \times 1=0 \\
& 2 a_{2} \times 1+a_{1} \times 2^{2 / 3}+a_{0} \times 2^{1 / 3}=0
\end{aligned}
$$

$$
2 a_{2} \times 2^{1 / 3}+2 a_{1} \times 1+a_{0} \times 2^{2 / 3}=0
$$

We rewrite these putting the powers of 2 in order.

$$
\begin{aligned}
& a_{2} \times 2^{2 / 3}+a_{1} \times 2^{1 / 3}+a_{0} \times 1=0 \\
& a_{1} \times 2^{2 / 3}+a_{0} \times 2^{1 / 3}+2 a_{2} \times 1=0 \\
& a_{0} \times 2^{2 / 3}+2 a_{2} \times 2^{1 / 3}+2 a_{1} \times 1=0
\end{aligned}
$$

We rewrite this as a matrix times a vector being the zero vector:

$$
\left(\begin{array}{ccc}
a_{2} & a_{1} & a_{0} \\
a_{1} & a_{0} & 2 a_{2} \\
a_{0} & 2 a_{2} & 2 a_{1}
\end{array}\right)\left(\begin{array}{c}
2^{2 / 3} \\
2^{1 / 3} \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Let

$$
A=\left(\begin{array}{ccc}
a_{2} & a_{1} & a_{0} \\
a_{1} & a_{0} & 2 a_{2} \\
a_{0} & 2 a_{2} & 2 a_{1}
\end{array}\right)
$$

The matrix above can be multiplied by a non-zero vector and get zero. Hence the matrix has det 0 . Hence the det is 0 MOD 2 . Hence the det of

$$
A=\left(\begin{array}{ccc}
a_{2} & a_{1} & a_{0} \\
a_{1} & a_{0} & 0 \\
a_{0} & 0 & 0
\end{array}\right)
$$

$\bmod 2$ is 0 . By the expansion of det, $a_{0}^{3} \equiv 0(\bmod 2)$, so $a_{0} \equiv 0(\bmod 2)$.
Hence the det of

$$
A=\left(\begin{array}{ccc}
a_{2} & a_{1} & 0 \\
a_{1} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$\bmod 2$ is 0 .
We rewrite the matrix as

$$
A=\left(\begin{array}{ccc}
a_{2} & a_{1} & 2 b_{0} \\
a_{1} & 2 b_{0} & 2 a_{2} \\
2 b_{0} & 2 a_{2} & 2 a_{1}
\end{array}\right)
$$

Since this matrix has det 0 , so does the matrix obtained by dividing the last column by 2 :

$$
A=\left(\begin{array}{ccc}
a_{2} & a_{1} & b_{0} \\
a_{1} & 2 b_{0} & a_{2} \\
2 b_{0} & 2 a_{2} & a_{1}
\end{array}\right)
$$

Now take this matrix mod 2 to get

$$
A=\left(\begin{array}{ccc}
a_{2} & a_{1} & b_{0} \\
a_{1} & 0 & a_{2} \\
0 & 0 & a_{1}
\end{array}\right)
$$

We find the det mod 2 by expanding around the middle of the top row a_{1} :

$$
a_{1}\left(\left(a_{1}^{2}+a_{2} \times 0\right)+0+0\right)=a_{1}^{3} .
$$

Hence $a_{1}^{3} \equiv 0(\bmod 2)$, so $a_{1} \equiv 0(\bmod 2)$.
We rewrite our matrix as

$$
A=\left(\begin{array}{ccc}
a_{2} & 2 b_{1} & b_{0} \\
2 b_{1} & 2 b_{0} & a_{2} \\
2 b_{0} & 2 a_{2} & 2 b_{1}
\end{array}\right)
$$

We divide the middle column by 2 to get

$$
A=\left(\begin{array}{ccc}
a_{2} & b_{1} & b_{0} \\
2 b_{1} & b_{0} & a_{2} \\
2 b_{0} & a_{2} & 2 b_{1}
\end{array}\right)
$$

We take this matrix mod 2 to get

$$
A=\left(\begin{array}{ccc}
a_{2} & b_{1} & b_{0} \\
0 & b_{0} & a_{2} \\
0 & a_{2} & 0
\end{array}\right)
$$

By expanding on the upper left a_{2} we get $a_{2}^{3} \equiv 0$ so $a_{2} \equiv 0$.
Hence a_{0}, a_{1}, a_{2} are all even, which is a contradiction.

