
MiniMax and Alpha Beta Pruning
CMSC 250H



Combinatorial Search

● Search algorithms that solve a particular problem by using large solution 
spaces

○ A* Search
○ Minimax
○ Alpha Beta pruning

 



Combinatorial Search

● Search algorithms that solve a particular problem by using large solution 
spaces

○ A* Search
○ Minimax
○ Alpha Beta pruning

● At each step, the algorithm looks at all possible combinations of decisions

 



Game Tree



Tic Tac Toe

● How many ways can you make the first move?



Tic Tac Toe

● How many ways can you make the first move?
○ 9



Tic Tac Toe

● How many ways can you make the first move?
○ 9

● How many ways can a game of Tic-Tac-Toe be played?



Tic Tac Toe

● How many ways can you make the first move?
○ 9

● How many ways can a game of Tic-Tac-Toe be played?
○ 255,168



Tic Tac Toe

● How many ways can you make the first move?
○ 9

● How many ways can a game of Tic-Tac-Toe be played?
○ 255,168

● The game tree will have 255,168 leaves



MiniMax

● Algorithm used in AI, Decision Theory, Game Theory, Stats, and Philosophy
○ Combinatorial Game Theory: Gives Game Solutions



MiniMax

● Algorithm used in AI, Decision Theory, Game Theory, Stats, and Philosophy
○ Combinatorial Game Theory: Gives Game Solutions

● Idea: Minimize Loss in Worst Case



MiniMax

● Algorithm used in AI, Decision Theory, Game Theory, Stats, and Philosophy
○ Combinatorial Game Theory: Gives Game Solutions

● Idea: Minimize Loss in Worst Case
● Uses Recursion or Backtracking to make a Perfect Choice



MiniMax

● Algorithm used in AI, Decision Theory, Game Theory, Stats, and Philosophy
○ Combinatorial Game Theory: Gives Game Solutions

● Idea: Minimize Loss in Worst Case
● Uses Recursion or Backtracking to make a Perfect Choice
● Slow!

○ Needs to visit every node



MiniMax

https://lucid.app/documents/edit/0d9924fb-794d-4245-83e5-a94ccabf3b9e/0?callback=close&name=slides&callback_type=back&v=223&s=720


MiniMax

https://lucid.app/documents/edit/0d9924fb-794d-4245-83e5-a94ccabf3b9e/0?callback=close&name=slides&callback_type=back&v=366&s=720


MiniMax

https://lucid.app/documents/edit/0d9924fb-794d-4245-83e5-a94ccabf3b9e/0?callback=close&name=slides&callback_type=back&v=370&s=720


MiniMax

https://lucid.app/documents/edit/0d9924fb-794d-4245-83e5-a94ccabf3b9e/0?callback=close&name=slides&callback_type=back&v=381&s=720


MiniMax

https://lucid.app/documents/edit/0d9924fb-794d-4245-83e5-a94ccabf3b9e/0?callback=close&name=slides&callback_type=back&v=385&s=720


Bigger Example



Bigger Example



Tree Traversal

Pre-Order: Left Side of Bubble

https://lucid.app/documents/edit/9613dcf4-ade4-44da-b490-6a72a4e9c54c/0?callback=close&name=slides&callback_type=back&v=178&s=720


Tree Traversal

Pre-Order: Left Side of Bubble

{1, 2, 4, 5, 3, 6, 7}

}

https://lucid.app/documents/edit/9613dcf4-ade4-44da-b490-6a72a4e9c54c/0?callback=close&name=slides&callback_type=back&v=178&s=720


Tree Traversal

Pre-Order: Left Side of Bubble

{1, 2, 4, 5, 3, 6, 7}

In-Order: Bottom of Bubble

https://lucid.app/documents/edit/9613dcf4-ade4-44da-b490-6a72a4e9c54c/0?callback=close&name=slides&callback_type=back&v=178&s=720


Tree Traversal

Pre-Order: Left Side of Bubble

{1, 2, 4, 5, 3, 6, 7}

In-Order: Bottom of Bubble

{4, 2, 5, 1, 6, 3, 7}

https://lucid.app/documents/edit/9613dcf4-ade4-44da-b490-6a72a4e9c54c/0?callback=close&name=slides&callback_type=back&v=178&s=720


Tree Traversal

Pre-Order: Left Side of Bubble

{1, 2, 4, 5, 3, 6, 7}

In-Order: Bottom of Bubble

{4, 2, 5, 1, 6, 3, 7}

Post-Order: Right Side of Bubble

https://lucid.app/documents/edit/9613dcf4-ade4-44da-b490-6a72a4e9c54c/0?callback=close&name=slides&callback_type=back&v=178&s=720


Tree Traversal

Pre-Order: Left Side of Bubble

{1, 2, 4, 5, 3, 6, 7}

In-Order: Bottom of Bubble

{4, 2, 5, 1, 6, 3, 7}

Post-Order: Right Side of Bubble

{4, 5, 2, 6, 7, 3, 1}

https://lucid.app/documents/edit/9613dcf4-ade4-44da-b490-6a72a4e9c54c/0?callback=close&name=slides&callback_type=back&v=178&s=720


Alpha Beta Pruning

● Makes MiniMax more efficient



Alpha Beta Pruning

● Makes MiniMax more efficient
● If we search down the whole tree, the number of states is exponential to the depth of the tree



Alpha Beta Pruning

● Makes MiniMax more efficient
● If we search down the whole tree, the number of states is exponential to the depth of the tree
● Alpha Beta Pruning cuts away leaves when traversing tree



Alpha Beta Pruning

● Makes MiniMax more efficient
● If we search down the whole tree, the number of states is exponential to the depth of the tree
● Alpha Beta Pruning cuts away leaves when traversing tree
● Stops evaluating a state when at least one possibility has been found to prove worse then a previous 

found move



Alpha Beta Pruning

● Makes MiniMax more efficient
● If we search down the whole tree, the number of states is exponential to the depth of the tree
● Alpha Beta Pruning cuts away leaves when traversing tree
● Stops evaluating a state when at least one possibility has been found to prove worse then a previous 

found move
● Returns the same value that MiniMax would produce



Alpha Beta Pruning

● Makes MiniMax more efficient
● If we search down the whole tree, the number of states is exponential to the depth of the tree
● Alpha Beta Pruning cuts away leaves when traversing tree
● Stops evaluating a state when at least one possibility has been found to prove worse then a previous 

found move
● Returns the same value that MiniMax would produce
● Prunes away branches that do not influence final decision



Alpha Beta Pruning

● Makes MiniMax more efficient
● If we search down the whole tree, the number of states is exponential to the depth of the tree
● Alpha Beta Pruning cuts away leaves when traversing tree
● Stops evaluating a state when at least one possibility has been found to prove worse then a previous 

found move
● Returns the same value that MiniMax would produce
● Prunes away branches that do not influence final decision
● In the tuple [α , β]

○ Maximize α
○ Minimize β



Alpha Beta Pruning



Alpha Beta Pruning



Alpha Beta Pruning



Alpha Beta Pruning



Alpha Beta Pruning



Alpha Beta Pruning



Bigger Example



Bigger Example



Pseudo Code

maxValue(state, α, β)
If (Terminal State)

Return value
Else

For each child
If (Player 2’s turn)

α = max(α, minValue(state,α, β))
If (α ≥ β)

return β
Else

β = min(β, maxValue(state,α, β))
Return β 

Return α



Pseudo Code

maxValue(state, α, β)
If (Terminal State)

Return value
Else

For each child
If (Player 2’s turn)

α = max(α, minValue(state,α, β))
If (α ≥ β)

return β
Else

β = min(β, maxValue(state,α, β))
Return β 

Return α

minValue(state, α, β)
If (Terminal State)

Return value
Else

For each child
If (Player 1’s turn)

β = min(β, maxValue(state,α, β))
If (β ≤ α)

return α
Else

α = max(α, minValue(state,α, β))
Return α 

Return β



MiniMax vs. Alpha Beta Pruning Runtime
● MiniMax

○ Runtime: O(bh)
○ Space: O(bh)

b = Branching Factor
h = Height of the Tree



MiniMax vs. Alpha Beta Pruning Runtime
● MiniMax

○ Runtime: O(bh)
○ Space: O(bh)

● Alpha Beta Pruning
○ Runtime: 

■ Worst-Case: O(bh)
■ Best-Case: O(bh/2)

○ Space: O(bh)

b = Branching Factor
h = Height of the Tree



MiniMax vs. Alpha Beta Pruning Runtime
● MiniMax

○ Runtime: O(bh)
○ Space: O(bh)

● Alpha Beta Pruning
○ Runtime: 

■ Worst-Case: O(bh)
■ Best-Case: O(bh/2)

○ Space: O(bh)

b = Branching Factor
h = Height of the Tree

Why is the Worst-Case Runtime equal to MiniMax? 



MiniMax vs. Alpha Beta Pruning Runtime
● MiniMax

○ Runtime: O(bh)
○ Space: O(bh)

● Alpha Beta Pruning
○ Runtime: 

■ Worst-Case: O(bh)
■ Best-Case: O(bh/2)

○ Space: O(bh)

b = Branching Factor
h = Height of the Tree

Why is the Worst-Case Runtime equal to MiniMax? 

In the Worst-Case, your Alpha Beta is running 
MiniMax! 



Alpha Beta for 2 Player Games

● Game Trees get really big really fast
○ Grows exponentially
○ Alpha Beta Pruning is more efficient than Minimax



Alpha Beta for 2 Player Games

● Game Trees get really big really fast
○ Grows exponentially
○ Alpha Beta Pruning is more efficient than Minimax

● Used for many games
○ Tic-Tac-Toe
○ Chess
○ Go



Alpha Beta for 2 Player Games

● Game Trees get really big really fast
○ Grows exponentially
○ Alpha Beta Pruning is more efficient than Minimax

● Used for many games
○ Tic-Tac-Toe
○ Chess
○ Go

● Heuristic is easily incorporated
○ A Heuristic is a mapping from a game state to a value

■ Ex: In Chess, White Pieces - Black Pieces = Value
● This is a bad heuristic to use 

○ We use heuristics when we do not want calculate every end game state



Real Life Use: Pokemon 

● I created a AI simulation that simulates a competitive battling scenario
○ Used Java
○ Dictionary of Pokemon
○ Dictionary of Moves
○ Battle Game Tree
○ Alpha Beta Pruning to Traverse tree
○ Minimax to Check Alpha Beta
○ 12 different classes



Example

Play Rough

S
ha

do
w

 
C

la
w

Switch to Marshadow

Psycho 
Boost

Ic
e 

B
ea

m

Switch Psycho 
Boost

Switch SwitchPsycho 
Boost

Ic
e 

B
ea

m

Ic
e 

B
ea

m

Mimikyu HP: 55
Deoxys HP: 50

Mimikyu HP: 55
Deoxys HP: 0

Mimikyu HP: 55
Deoxys HP: 35

Marshadow HP: 90
Deoxys HP: 50



Example

Play Rough

S
ha

do
w

 
C

la
w

Switch to Marshadow

Psycho 
Boost

Ic
e 

B
ea

m

Switch Psycho 
Boost

Switch SwitchPsycho 
Boost

Ic
e 

B
ea

m

Ic
e 

B
ea

m

Mimikyu HP: 55
Deoxys HP: 50

Mimikyu HP: 55
Deoxys HP: 0

Mimikyu HP: 55
Deoxys HP: 35

Marshadow HP: 90
Deoxys HP: 50


