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● At each step, the algorithm looks at all possible combinations of decisions
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Tic Tac Toe

● How many ways can you make the first move?
○ 9

● How many ways can a game of Tic-Tac-Toe be played?
○ 255,168

● The game tree will have 255,168 leaves
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MiniMax

● Algorithm used in AI, Decision Theory, Game Theory, Stats, and Philosophy
○ Combinatorial Game Theory: Gives Game Solutions

● Idea: Minimize Loss in Worst Case
● Uses Recursion or Backtracking to make a Perfect Choice
● Slow!

○ Needs to visit every node



MiniMax

https://lucid.app/documents/edit/0d9924fb-794d-4245-83e5-a94ccabf3b9e/0?callback=close&name=slides&callback_type=back&v=223&s=720
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https://lucid.app/documents/edit/0d9924fb-794d-4245-83e5-a94ccabf3b9e/0?callback=close&name=slides&callback_type=back&v=366&s=720


MiniMax

https://lucid.app/documents/edit/0d9924fb-794d-4245-83e5-a94ccabf3b9e/0?callback=close&name=slides&callback_type=back&v=370&s=720


MiniMax
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MiniMax

https://lucid.app/documents/edit/0d9924fb-794d-4245-83e5-a94ccabf3b9e/0?callback=close&name=slides&callback_type=back&v=385&s=720
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Tree Traversal

Pre-Order: Left Side of Bubble

https://lucid.app/documents/edit/9613dcf4-ade4-44da-b490-6a72a4e9c54c/0?callback=close&name=slides&callback_type=back&v=178&s=720
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Tree Traversal

Pre-Order: Left Side of Bubble

{1, 2, 4, 5, 3, 6, 7}

In-Order: Bottom of Bubble

{4, 2, 5, 1, 6, 3, 7}
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Tree Traversal

Pre-Order: Left Side of Bubble
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Tree Traversal

Pre-Order: Left Side of Bubble

{1, 2, 4, 5, 3, 6, 7}

In-Order: Bottom of Bubble

{4, 2, 5, 1, 6, 3, 7}

Post-Order: Right Side of Bubble

{4, 5, 2, 6, 7, 3, 1}

https://lucid.app/documents/edit/9613dcf4-ade4-44da-b490-6a72a4e9c54c/0?callback=close&name=slides&callback_type=back&v=178&s=720
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Alpha Beta Pruning

● Makes MiniMax more efficient
● If we search down the whole tree, the number of states is exponential to the depth of the tree
● Alpha Beta Pruning cuts away leaves when traversing tree
● Stops evaluating a state when at least one possibility has been found to prove worse then a previous 

found move
● Returns the same value that MiniMax would produce
● Prunes away branches that do not influence final decision
● In the tuple [α , β]

○ Maximize α
○ Minimize β
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Pseudo Code

maxValue(state, α, β)
If (Terminal State)

Return value
Else

For each child
If (Player 2’s turn)

α = max(α, minValue(state,α, β))
If (α ≥ β)

return β
Else

β = min(β, maxValue(state,α, β))
Return β 

Return α



Pseudo Code

maxValue(state, α, β)
If (Terminal State)

Return value
Else

For each child
If (Player 2’s turn)

α = max(α, minValue(state,α, β))
If (α ≥ β)

return β
Else

β = min(β, maxValue(state,α, β))
Return β 

Return α

minValue(state, α, β)
If (Terminal State)

Return value
Else

For each child
If (Player 1’s turn)

β = min(β, maxValue(state,α, β))
If (β ≤ α)

return α
Else

α = max(α, minValue(state,α, β))
Return α 

Return β
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● MiniMax

○ Runtime: O(bh)
○ Space: O(bh)

● Alpha Beta Pruning
○ Runtime: 

■ Worst-Case: O(bh)
■ Best-Case: O(bh/2)

○ Space: O(bh)

b = Branching Factor
h = Height of the Tree

Why is the Worst-Case Runtime equal to MiniMax? 

In the Worst-Case, your Alpha Beta is running 
MiniMax! 
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Alpha Beta for 2 Player Games

● Game Trees get really big really fast
○ Grows exponentially
○ Alpha Beta Pruning is more efficient than Minimax

● Used for many games
○ Tic-Tac-Toe
○ Chess
○ Go

● Heuristic is easily incorporated
○ A Heuristic is a mapping from a game state to a value

■ Ex: In Chess, White Pieces - Black Pieces = Value
● This is a bad heuristic to use 

○ We use heuristics when we do not want calculate every end game state



Real Life Use: Pokemon 

● I created a AI simulation that simulates a competitive battling scenario
○ Used Java
○ Dictionary of Pokemon
○ Dictionary of Moves
○ Battle Game Tree
○ Alpha Beta Pruning to Traverse tree
○ Minimax to Check Alpha Beta
○ 12 different classes
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