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● 4
● 3 + 1
● 2 + 2
● 2 + 1 + 1 
● 1 + 1 + 1 + 1  
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Integer Partition

Def: p(n) is defined as the number of partitions of n

What is p(4)? 5

● 4
● 3 + 1
● 2 + 2
● 2 + 1 + 1 
● 1 + 1 + 1 + 1

What is p(0)? 1 
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Notation

Math people are lazy

2 + 2 + 1 = (2, 2, 1) = (22, 1)

● Note: 22 does not mean 2 squared. 
○ Instead it means how many times that number appears in a partition. 
○ Don’t use this because its confusing, but if you see it out in the wild this is what it means. 



Back to Making Change

We only want to look at Pennies and Nickels. 

Let p(0) = p(1) = p(2) = p(3) = p(4) = 1. Let n ≥ 5.

p(n): use a nickel or don’t

● If we use a nickel then p(n-5) 
○ makes sense since n ≥ 5

● If we do not use nickels then you have n cents, only pennies, so 1 way
○ p(n) = p(n-5)+1



Everyone's Favorite Forced Social Time

● In breakout rooms, try and find a pattern for large n’s



Pattern

if 0 ≤ i ≤ 4:

● p(5n+i)  we have to use i pennies, so this is p(5n)
● p(5n) = p(5(n-1)) + 1
● p(5n+i) = n+1



Another Answer

Coefficients of xn in: 

This is an odd approach to finding taylor series: If we want to find the taylor series 
of a function, first find a change problem that it answers, solve that change 
problem, and you have the taylor series
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Partitions

Partitions can be viewed graphically with Ferrer Diagrams

Let’s look at 4’s Ferrer Diagrams.



How to make a Ferrer Diagram

● Finite collection of boxes or dots
● Arranged in Left-Justified Rows
● Row Lengths in non-increasing order



Notation

Young Diagram Ferrers Diagram
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Notation

That’s dumb they should be called the same thing.

For our purposes yes, but each actually has a different purpose in the greater 
scope of math

Young Diagrams are useful in 

● Symmetric functions and group representation theory
● Polyominoes
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Notation again

Why does this have so many notations for such a simple thing? IDK

English Notation French Notation

Yes this one is dumb. Mathematicians get heated about this.

In his book “symmetric functions”, Macdonald tells readers preferring the French 
convention to "read this book upside down in a mirror" (Macdonald 1979, p. 2)
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Theorem

● The number of ways to partition n into < m parts is the number of ways to 
partition n into parts the largest of which is < m

● The number of ways of partitioning n into m parts is equal to the number of 
ways of partitioning n into parts, the largest of which is m.
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Let’s look at 10 with n = 3

4 + 3 + 3 1 + 3 + 3 + 3

What is m in both of these diagrams? 3

⚉ ⚉ ⚉ ⚉
⚉ ⚉ ⚉
⚉ ⚉ ⚉

⚉
⚉ ⚉ ⚉
⚉ ⚉ ⚉
⚉ ⚉ ⚉
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Theorems

Lemma: The number of partitions of n with no parts equal to 1 is p(n) - p(n-1)

Theorem: The number of partitions of n into distinct parts equals the number of 
partitions of n into odd parts.

Theorem: The number of partitions of n into parts that are both odd and distinct is 
equal to the number of self-conjugate partitions of n. (This can be proved using 
Ferrer diagrams)


