Grid Coloring

250H

$3 \times n$ Grids

- No matter how you 2-color a 3×9 grid there exists a mono rectangle

$3 \times n$ Grids

- No matter how you 2-color a 3×9 grid there exists a mono rectangle

$3 \times n$ Grids

- No matter how you 2-color a 3×9 grid there exists a mono rectangle

$3 \times n$ Grids

- No matter how you 2-color a 3×9 grid there exists a mono rectangle
- What about a
- 3×8
- 3×7
- 3×6
- ect?

$3 \times n$ Grids

- No matter how you 2-color a 3×9 grid there exists a mono rectangle
- What about a
- 3×8
- 3×7
- 3×6
- ect?
- I know you are all super excited to talk about this with your classmates

$3 \times n$ Grids

- No matter how you 2-color a 3×9 grid there exists a mono rectangle
- What about a
- 3×8
- 3×7
- 3×6
- ect?

Let's Look Closer

A 2-coloring of a 3×7 grid can be viewed as an 8-coloring of the rows, so if there are 9 rows, two are the same.

What about?

- 4×4
- 4×5
- 4×6
- 5×5
- 5×6

What about?

- 4×4
- 4×5
- 4×6
- 5×5
- 5×6

$\mathrm{n} \times \mathrm{m}$ grid 2-Coloring Theorem

Theorem: nx m is 2-colorable without a monochromatic rectangle if and only if it does not contain a $3 \times 7,7 \times 3$, or 5×5 grid.

What if we have 3 colors?

We can expand this to look at what grids we can color for 3 colors

