Please Fill Out All of Your Courses Teaching Evals

May 10, 2022

Please Fill Out All of Your Courses Teaching Evals

Please Fill Out All of Your Courses Teaching Evals

1) Teachers read their teaching eval comments for self-improvement.

Please Fill Out All of Your Courses Teaching Evals

1) Teachers read their teaching eval comments for self-improvement.
2) The Teach Eval Chair reads others teaching evals and may discuss it with the teacher.

Please Fill Out All of Your Courses Teaching Evals

1) Teachers read their teaching eval comments for self-improvement.
2) The Teach Eval Chair reads others teaching evals and may discuss it with the teacher.
3) The Undergrad Chair reads others teaching evals and may discuss it with the teacher.

Please Fill Out All of Your Courses Teaching Evals

1) Teachers read their teaching eval comments for self-improvement.
2) The Teach Eval Chair reads others teaching evals and may discuss it with the teacher.
3) The Undergrad Chair reads others teaching evals and may discuss it with the teacher.
4) The committee that gives out teaching awards reads the teaching evals to help make a decision.

Please Fill Out All of Your Courses Teaching Evals

1) Teachers read their teaching eval comments for self-improvement.
2) The Teach Eval Chair reads others teaching evals and may discuss it with the teacher.
3) The Undergrad Chair reads others teaching evals and may discuss it with the teacher.
4) The committee that gives out teaching awards reads the teaching evals to help make a decision.
5) When a teacher goes up for tenure, the teaching evals are used in the teaching report.

Please Fill Out All of Your Courses Teaching Evals

1) Teachers read their teaching eval comments for self-improvement.
2) The Teach Eval Chair reads others teaching evals and may discuss it with the teacher.
3) The Undergrad Chair reads others teaching evals and may discuss it with the teacher.
4) The committee that gives out teaching awards reads the teaching evals to help make a decision.
5) When a teacher goes up for tenure, the teaching evals are used in the teaching report.
6) The biggest problem we have for all of the above is when not that many students fill them out. Hence

Please Fill Out All of Your Courses Teaching Evals

1) Teachers read their teaching eval comments for self-improvement.
2) The Teach Eval Chair reads others teaching evals and may discuss it with the teacher.
3) The Undergrad Chair reads others teaching evals and may discuss it with the teacher.
4) The committee that gives out teaching awards reads the teaching evals to help make a decision.
5) When a teacher goes up for tenure, the teaching evals are used in the teaching report.
6) The biggest problem we have for all of the above is when not that many students fill them out. Hence
7) Please Fill Out the Teaching Evals in All of your Courses

How to Use the Half Method

(1) Given Upper Bound (2) NOT Given Upper Bound

May 10, 2022

How Your Program Shows $f(45,26) \leq \frac{32}{78}$

May 10, 2022

Your Programs FC Step on $f(45,26)$

$$
f(m, s) \leq \max \left\{\frac{1}{3}, \min \left\{\frac{m}{s} \times \frac{1}{\lceil 2 m / s\rceil}, 1-\frac{m}{2} \times \frac{1}{\lfloor 2 m / s\rfloor}\right\}\right\} .
$$

Your Programs FC Step on $f(45,26)$

$$
\begin{aligned}
& f(m, s) \leq \max \left\{\frac{1}{3}, \min \left\{\frac{m}{s} \times \frac{1}{\lceil 2 m / s\rceil}, 1-\frac{m}{2} \times \frac{1}{\lfloor 2 m / s\rfloor}\right\}\right\} . \\
& \frac{2 m}{s}=\frac{90}{26}=\frac{45}{13} \sim 3.46 \quad\left\lfloor\frac{2 m}{s}\right\rfloor=3 \quad\left\lceil\frac{2 m}{s}\right\rceil=4
\end{aligned}
$$

Your Programs FC Step on $f(45,26)$

$$
f(m, s) \leq \max \left\{\frac{1}{3}, \min \left\{\frac{m}{s} \times \frac{1}{\lceil 2 m / s\rceil}, 1-\frac{m}{2} \times \frac{1}{\lfloor 2 m / s\rfloor}\right\}\right\} .
$$

$$
\frac{2 m}{s}=\frac{90}{26}=\frac{45}{13} \sim 3.46 \quad\left\lfloor\frac{2 m}{s}\right\rfloor=3 \quad\left\lceil\frac{2 m}{s}\right\rceil=4
$$

$$
f(45,26) \leq \max \left\{\frac{1}{3}, \min \left\{\frac{45}{26} \times \frac{1}{4}, 1-\frac{45}{26} \times \frac{1}{3}\right\}\right\}=\min \left\{\frac{45}{104}, 1-\frac{15}{26}\right\}
$$

Your Programs FC Step on $f(45,26)$

$$
\begin{gathered}
f(m, s) \leq \max \left\{\frac{1}{3}, \min \left\{\frac{m}{s} \times \frac{1}{\lceil 2 m / s\rceil}, 1-\frac{m}{2} \times \frac{1}{\lfloor 2 m / s\rfloor}\right\}\right\} \\
\frac{2 m}{s}=\frac{90}{26}=\frac{45}{13} \sim 3.46 \quad\left\lfloor\frac{2 m}{s}\right\rfloor=3 \quad\left\lceil\frac{2 m}{s}\right\rceil=4 \\
f(45,26) \leq \max \left\{\frac{1}{3}, \min \left\{\frac{45}{26} \times \frac{1}{4}, 1-\frac{45}{26} \times \frac{1}{3}\right\}\right\}=\min \left\{\frac{45}{104}, 1-\frac{15}{26}\right\} \\
=\min \left\{\frac{45}{104}, \frac{11}{26}\right\}=\frac{11}{26} \sim 0.423
\end{gathered}
$$

We want $f(m, s) \leq \frac{32}{78} \sim 0.410$. So FC NOT powerful enough.

The V-step

Your program will try $V=2,3,4, \ldots$ and find out that

The V-step

Your program will try $V=2,3,4, \ldots$ and find out that
If someone gets ≤ 2 shares then \exists a share $\geq \frac{45}{26} \times \frac{1}{2}=\frac{45}{52}$.

The V-step

Your program will try $V=2,3,4, \ldots$ and find out that
If someone gets ≤ 2 shares then \exists a share $\geq \frac{45}{26} \times \frac{1}{2}=\frac{45}{52}$. Buddy is $\leq 1-\frac{45}{52}=\frac{7}{52}<\frac{32}{78}$.

The V-step

Your program will try $V=2,3,4, \ldots$ and find out that
If someone gets ≤ 2 shares then \exists a share $\geq \frac{45}{26} \times \frac{1}{2}=\frac{45}{52}$. Buddy is $\leq 1-\frac{45}{52}=\frac{7}{52}<\frac{32}{78}$.

If someone gets ≥ 5 shares then \exists a share $\leq \frac{45}{26} \times \frac{1}{5}=\frac{9}{26}<\frac{32}{78}$.

The V-step

Your program will try $V=2,3,4, \ldots$ and find out that
If someone gets ≤ 2 shares then \exists a share $\geq \frac{45}{26} \times \frac{1}{2}=\frac{45}{52}$.
Buddy is $\leq 1-\frac{45}{52}=\frac{7}{52}<\frac{32}{78}$.
If someone gets ≥ 5 shares then \exists a share $\leq \frac{45}{26} \times \frac{1}{5}=\frac{9}{26}<\frac{32}{78}$.
$V=4$.

The V-step

Your program will try $V=2,3,4, \ldots$ and find out that
If someone gets ≤ 2 shares then \exists a share $\geq \frac{45}{26} \times \frac{1}{2}=\frac{45}{52}$.
Buddy is $\leq 1-\frac{45}{52}=\frac{7}{52}<\frac{32}{78}$.
If someone gets ≥ 5 shares then \exists a share $\leq \frac{45}{26} \times \frac{1}{5}=\frac{9}{26}<\frac{32}{78}$.
$V=4$.
Some students gets 3 shares.
Some students gets 4 shares.

Equations Step

$$
\begin{aligned}
& 3 s_{3}+4 s_{4}=90 \\
& s_{3}+s_{4}=26
\end{aligned}
$$

Equations Step

$$
\begin{aligned}
& 3 s_{3}+4 s_{4}=90 \\
& s_{3}+s_{4}=26
\end{aligned}
$$

$$
s_{3}=14
$$

$$
s_{4}=12
$$

Equations Step

$$
\begin{aligned}
& 3 s_{3}+4 s_{4}=90 \\
& s_{3}+s_{4}=26
\end{aligned}
$$

$$
s_{3}=14
$$

$$
s_{4}=12
$$

14 students get 3 shares

Equations Step

$$
\begin{aligned}
& 3 s_{3}+4 s_{4}=90 \\
& s_{3}+s_{4}=26
\end{aligned}
$$

$s_{3}=14$
$s_{4}=12$.
14 students get 3 shares
12 students get 4 shares

Equations Step

$$
\begin{aligned}
& 3 s_{3}+4 s_{4}=90 \\
& s_{3}+s_{4}=26
\end{aligned}
$$

$$
s_{3}=14
$$

$$
s_{4}=12
$$

14 students get 3 shares
12 students get 4 shares
Note:
there are $3 \times 14=42$ 3-shares there are $4 \times 12=484$-shares.

Equations Step

$3 s_{3}+4 s_{4}=90$
$s_{3}+s_{4}=26$
$s_{3}=14$
$s_{4}=12$.
14 students get 3 shares
12 students get 4 shares
Note:
there are $3 \times 14=42$ 3-shares there are $4 \times 12=484$-shares.

Note One way for HALF to not work is if these equations have a solution that is not in \mathbb{N}.

The β Step

The β Step

Want if $\exists 4$-share $\geq \beta$ then some piece $\leq \frac{32}{78}$.

The $\boldsymbol{\beta}$ Step

Want if $\exists 4$-share $\geq \beta$ then some piece $\leq \frac{32}{78}$.
Alice has $p_{1} \leq p_{2} \leq p_{3} \leq p_{4}$.

The β Step

$$
\begin{gathered}
\left(\begin{array}{c}
\frac{32}{78} \\
\end{array} 48 \text { 4-shs }\right) \\
\beta
\end{gathered}
$$

Want if $\exists 4$-share $\geq \beta$ then some piece $\leq \frac{32}{78}$.
Alice has $p_{1} \leq p_{2} \leq p_{3} \leq p_{4}$.
Assume $p_{4} \geq \beta$ and later pick β to get a contradiction.
$p_{1}+p_{2}+p_{3}+p_{4}=\frac{45}{26}$
$p_{1}+p_{2}+p_{3}=\frac{45}{26}-p_{4} \leq \frac{45}{26}-\beta$

The β Step

$$
\begin{gathered}
\left(\begin{array}{c}
\frac{32}{78} \\
\end{array} 48 \text { 4-shs }\right) \\
\beta
\end{gathered}
$$

Want if $\exists 4$-share $\geq \beta$ then some piece $\leq \frac{32}{78}$.
Alice has $p_{1} \leq p_{2} \leq p_{3} \leq p_{4}$.
Assume $p_{4} \geq \beta$ and later pick β to get a contradiction.
$p_{1}+p_{2}+p_{3}+p_{4}=\frac{45}{26}$
$p_{1}+p_{2}+p_{3}=\frac{45}{26}-p_{4} \leq \frac{45}{26}-\beta$
$p_{1} \leq \frac{1}{3}\left(\frac{45}{26}-\beta\right)$. Want β so that $p_{1} \leq \frac{32}{78}$:

The β Step

$$
\begin{gathered}
\left(\begin{array}{c}
\frac{32}{78} \\
\end{array} 48 \text { 4-shs }\right) \\
\beta
\end{gathered}
$$

Want if $\exists 4$-share $\geq \beta$ then some piece $\leq \frac{32}{78}$.
Alice has $p_{1} \leq p_{2} \leq p_{3} \leq p_{4}$.
Assume $p_{4} \geq \beta$ and later pick β to get a contradiction.
$p_{1}+p_{2}+p_{3}+p_{4}=\frac{45}{26}$
$p_{1}+p_{2}+p_{3}=\frac{45}{26}-p_{4} \leq \frac{45}{26}-\beta$
$p_{1} \leq \frac{1}{3}\left(\frac{45}{26}-\beta\right)$. Want β so that $p_{1} \leq \frac{32}{78}$:
$\frac{1}{3}\left(\frac{45}{26}-\beta\right) \leq \frac{32}{78}$

The β Step

Want if $\exists 4$-share $\geq \beta$ then some piece $\leq \frac{32}{78}$.
Alice has $p_{1} \leq p_{2} \leq p_{3} \leq p_{4}$.
Assume $p_{4} \geq \beta$ and later pick β to get a contradiction.
$p_{1}+p_{2}+p_{3}+p_{4}=\frac{45}{26}$
$p_{1}+p_{2}+p_{3}=\frac{45}{26}-p_{4} \leq \frac{45}{26}-\beta$
$p_{1} \leq \frac{1}{3}\left(\frac{45}{26}-\beta\right)$. Want β so that $p_{1} \leq \frac{32}{78}$:
$\frac{1}{3}\left(\frac{45}{26}-\beta\right) \leq \frac{32}{78}$
$\beta \geq \frac{39}{78}=\frac{1}{2}$. Take $\beta=\frac{39}{78}$.

The γ Step (What you Really Want to See)

The γ Step (What you Really Want to See)

$$
\begin{array}{ccccc}
\left(\begin{array}{ll}
32 \\
\frac{32}{78} & 48
\end{array}\right. & \text { 4-shs } & \text {)[} & 0 &](\text { 42 3-shs } \\
\beta & & \gamma & & \\
\hline 78
\end{array}
$$

Want if $\exists 3$-share $\leq \gamma$ then some piece $\leq \frac{32}{78}$.

The γ Step (What you Really Want to See)

$$
\begin{array}{ccccc}
(48 & \text { 4-shs } & \text {) } \\
\frac{32}{78} & & 0 &](& 42 \\
\beta & & \gamma & & \\
& & & 46 \\
78
\end{array}
$$

Want if $\exists 3$-share $\leq \gamma$ then some piece $\leq \frac{32}{78}$.
Bob has $p_{1} \leq p_{2} \leq p_{3}$.

The γ Step (What you Really Want to See)

Want if $\exists 3$-share $\leq \gamma$ then some piece $\leq \frac{32}{78}$.
Bob has $p_{1} \leq p_{2} \leq p_{3}$.
Assume $p_{1} \leq \gamma$ and later pick γ to get a contradiction.
$p_{1}+p_{2}+p_{3}=\frac{45}{26}$
$p_{2}+p_{3}=\frac{45}{26}-p_{1} \geq \frac{45}{26}-\gamma$

The γ Step (What you Really Want to See)

Want if $\exists 3$-share $\leq \gamma$ then some piece $\leq \frac{32}{78}$.
Bob has $p_{1} \leq p_{2} \leq p_{3}$.
Assume $p_{1} \leq \gamma$ and later pick γ to get a contradiction.
$p_{1}+p_{2}+p_{3}=\frac{45}{26}$
$p_{2}+p_{3}=\frac{45}{26}-p_{1} \geq \frac{45}{26}-\gamma$
$p_{3} \geq \frac{1}{2}\left(\frac{45}{26}-\gamma\right)$. Key Look at buddy of p_{3}.

The γ Step (What you Really Want to See)

Want if $\exists 3$-share $\leq \gamma$ then some piece $\leq \frac{32}{78}$.
Bob has $p_{1} \leq p_{2} \leq p_{3}$.
Assume $p_{1} \leq \gamma$ and later pick γ to get a contradiction.
$p_{1}+p_{2}+p_{3}=\frac{45}{26}$
$p_{2}+p_{3}=\frac{45}{26}-p_{1} \geq \frac{45}{26}-\gamma$
$p_{3} \geq \frac{1}{2}\left(\frac{45}{26}-\gamma\right)$. Key Look at buddy of p_{3}.
$1-p_{3} \leq 1-\frac{1}{2}\left(\frac{45}{26}-\gamma\right)$. Want γ so that $1-p_{3} \leq \frac{32}{78}$:

The γ Step (What you Really Want to See)

Want if $\exists 3$-share $\leq \gamma$ then some piece $\leq \frac{32}{78}$.
Bob has $p_{1} \leq p_{2} \leq p_{3}$.
Assume $p_{1} \leq \gamma$ and later pick γ to get a contradiction.
$p_{1}+p_{2}+p_{3}=\frac{45}{26}$
$p_{2}+p_{3}=\frac{45}{26}-p_{1} \geq \frac{45}{26}-\gamma$
$p_{3} \geq \frac{1}{2}\left(\frac{45}{26}-\gamma\right)$. Key Look at buddy of p_{3}.
$1-p_{3} \leq 1-\frac{1}{2}\left(\frac{45}{26}-\gamma\right)$. Want γ so that $1-p_{3} \leq \frac{32}{78}$:
$1-\frac{1}{2}\left(\frac{45}{26}-\gamma\right) \leq \frac{32}{78}$.

The γ Step (What you Really Want to See)

Want if $\exists 3$-share $\leq \gamma$ then some piece $\leq \frac{32}{78}$.
Bob has $p_{1} \leq p_{2} \leq p_{3}$.
Assume $p_{1} \leq \gamma$ and later pick γ to get a contradiction.
$p_{1}+p_{2}+p_{3}=\frac{45}{26}$
$p_{2}+p_{3}=\frac{45}{26}-p_{1} \geq \frac{45}{26}-\gamma$
$p_{3} \geq \frac{1}{2}\left(\frac{45}{26}-\gamma\right)$. Key Look at buddy of p_{3}.
$1-p_{3} \leq 1-\frac{1}{2}\left(\frac{45}{26}-\gamma\right)$. Want γ so that $1-p_{3} \leq \frac{32}{78}$:
$1-\frac{1}{2}\left(\frac{45}{26}-\gamma\right) \leq \frac{32}{78}$.
$\gamma \leq \frac{43}{78}$. Take $\gamma=\frac{43}{78}$.

VHALF Step

There are 42 3-shares.
There are 48 4-shares

$$
\beta=\frac{1}{2} \leq \frac{1}{2} \leq \gamma=\frac{43}{78}
$$

$42 \neq 48$ so SUCCESS!

VHALF Step

There are 423 -shares.
There are 48 4-shares

$$
\beta=\frac{1}{2} \leq \frac{1}{2} \leq \gamma=\frac{43}{78}
$$

$42 \neq 48$ so $\operatorname{SUCCESS}!$
Note One way for the HALF method to fail is if $\gamma<\beta$

How Your Program Finds the Answer

May 10, 2022

V-Step and Equation Step

V-Step and Equation Step

$$
V=\left\lceil\frac{2 m}{s}\right\rceil=\left\lceil\frac{90}{26}\right\rceil=4
$$

V-Step and Equation Step

$$
\begin{aligned}
V & =\left\lceil\frac{2 m}{s}\right\rceil=\left\lceil\frac{90}{26}\right\rceil=4 \\
s_{3} & =14
\end{aligned}
$$

V-Step and Equation Step

$$
\begin{aligned}
V & =\left\lceil\frac{2 m}{s}\right\rceil=\left\lceil\frac{00}{26}\right\rceil=4 \\
s_{3} & =14 \\
s_{4} & =12
\end{aligned}
$$

$\beta=\frac{1}{2}$-Step

$$
\begin{array}{cccccc}
(& 48 & \text { 4-shs } &)\left[\begin{array}{llll}
\text { (} & 0 & \text { 3-shs } &) \\
\alpha & & \gamma & \\
1-\alpha
\end{array}\right)
\end{array}
$$

$\beta=\frac{1}{2}$-Step

We want to set α so that $\beta=\frac{1}{2}$.
Alice has $p_{1} \leq p_{2} \leq p_{3} \leq p_{4}$.
$\beta=\frac{1}{2}$-Step

We want to set α so that $\beta=\frac{1}{2}$.
Alice has $p_{1} \leq p_{2} \leq p_{3} \leq p_{4}$.
Assume $p_{4} \geq \beta=\frac{1}{2}$ and later pick α to get a contradiction.
$p_{1}+p_{2}+p_{3}+p_{4}=\frac{45}{26}$
$p_{1}+p_{2}+p_{3}=\frac{45}{26}-p_{4} \leq \frac{45}{26}-\frac{1}{2}$

$\beta=\frac{1}{2}$-Step

We want to set α so that $\beta=\frac{1}{2}$.
Alice has $p_{1} \leq p_{2} \leq p_{3} \leq p_{4}$.
Assume $p_{4} \geq \beta=\frac{1}{2}$ and later pick α to get a contradiction.
$p_{1}+p_{2}+p_{3}+p_{4}=\frac{45}{26}$
$p_{1}+p_{2}+p_{3}=\frac{45}{26}-p_{4} \leq \frac{45}{26}-\frac{1}{2}$
$p_{1} \leq \frac{1}{3}\left(\frac{45}{26}-\frac{1}{2}\right)$. Want α so that $p_{1} \leq \alpha$:

$\beta=\frac{1}{2}$-Step

We want to set α so that $\beta=\frac{1}{2}$.
Alice has $p_{1} \leq p_{2} \leq p_{3} \leq p_{4}$.
Assume $p_{4} \geq \beta=\frac{1}{2}$ and later pick α to get a contradiction.
$p_{1}+p_{2}+p_{3}+p_{4}=\frac{45}{26}$
$p_{1}+p_{2}+p_{3}=\frac{45}{26}-p_{4} \leq \frac{45}{26}-\frac{1}{2}$
$p_{1} \leq \frac{1}{3}\left(\frac{45}{26}-\frac{1}{2}\right)$. Want α so that $p_{1} \leq \alpha$:
$\frac{1}{3}\left(\frac{45}{26}-\frac{1}{2}\right)=\frac{32}{78}$.
We note that there are $48>454$-shares that are all $\leq \frac{1}{2}$.
So we have $\frac{32}{78}$ is an upper bound.

The $\gamma=\frac{1}{2}$ Step (What you Really Want to See)

The $\gamma=\frac{1}{2}$ Step (What you Really Want to See)

Want if $\exists 3$-share $\leq \gamma=\frac{1}{2}$ then some piece $\leq \alpha$.

The $\gamma=\frac{1}{2}$ Step (What you Really Want to See)

Want if $\exists 3$-share $\leq \gamma=\frac{1}{2}$ then some piece $\leq \alpha$.
Bob has $p_{1} \leq p_{2} \leq p_{3}$.

The $\gamma=\frac{1}{2}$ Step (What you Really Want to See)

Want if $\exists 3$-share $\leq \gamma=\frac{1}{2}$ then some piece $\leq \alpha$.
Bob has $p_{1} \leq p_{2} \leq p_{3}$.
Assume $p_{1} \leq \frac{1}{2}$ and later pick α to get a contradiction.
$p_{1}+p_{2}+p_{3}=\frac{45}{26}$
$p_{2}+p_{3}=\frac{45}{26}-\frac{1}{2}$

The $\gamma=\frac{1}{2}$ Step (What you Really Want to See)

Want if $\exists 3$-share $\leq \gamma=\frac{1}{2}$ then some piece $\leq \alpha$.
Bob has $p_{1} \leq p_{2} \leq p_{3}$.
Assume $p_{1} \leq \frac{1}{2}$ and later pick α to get a contradiction.
$p_{1}+p_{2}+p_{3}=\frac{45}{26}$
$p_{2}+p_{3}=\frac{45}{26}-\frac{1}{2}$
$p_{3} \geq \frac{1}{2}\left(\frac{45}{26}-\frac{1}{2}\right)$. Key Look at buddy of p_{3}.

The $\gamma=\frac{1}{2}$ Step (What you Really Want to See)

Want if $\exists 3$-share $\leq \gamma=\frac{1}{2}$ then some piece $\leq \alpha$.
Bob has $p_{1} \leq p_{2} \leq p_{3}$.
Assume $p_{1} \leq \frac{1}{2}$ and later pick α to get a contradiction.
$p_{1}+p_{2}+p_{3}=\frac{45}{26}$
$p_{2}+p_{3}=\frac{45}{26}-\frac{1}{2}$
$p_{3} \geq \frac{1}{2}\left(\frac{45}{26}-\frac{1}{2}\right)$. Key Look at buddy of p_{3}.
$1-p_{3} \leq 1-\frac{1}{2}\left(\frac{45}{26}-\frac{1}{2}\right)$. Want α so that $1-p_{3} \leq \alpha$:

The $\gamma=\frac{1}{2}$ Step (What you Really Want to See)

Want if $\exists 3$-share $\leq \gamma=\frac{1}{2}$ then some piece $\leq \alpha$.
Bob has $p_{1} \leq p_{2} \leq p_{3}$.
Assume $p_{1} \leq \frac{1}{2}$ and later pick α to get a contradiction.
$p_{1}+p_{2}+p_{3}=\frac{45}{26}$
$p_{2}+p_{3}=\frac{45}{26}-\frac{1}{2}$
$p_{3} \geq \frac{1}{2}\left(\frac{45}{26}-\frac{1}{2}\right)$. Key Look at buddy of p_{3}.
$1-p_{3} \leq 1-\frac{1}{2}\left(\frac{45}{26}-\frac{1}{2}\right)$. Want α so that $1-p_{3} \leq \alpha$:
$1-\frac{1}{2}\left(\frac{45}{26}-\frac{1}{2}\right) \leq \alpha$.

The $\gamma=\frac{1}{2}$ Step (What you Really Want to See)

Want if $\exists 3$-share $\leq \gamma=\frac{1}{2}$ then some piece $\leq \alpha$.
Bob has $p_{1} \leq p_{2} \leq p_{3}$.
Assume $p_{1} \leq \frac{1}{2}$ and later pick α to get a contradiction.
$p_{1}+p_{2}+p_{3}=\frac{45}{26}$
$p_{2}+p_{3}=\frac{45}{26}-\frac{1}{2}$
$p_{3} \geq \frac{1}{2}\left(\frac{45}{26}-\frac{1}{2}\right)$. Key Look at buddy of p_{3}.
$1-p_{3} \leq 1-\frac{1}{2}\left(\frac{45}{26}-\frac{1}{2}\right)$. Want α so that $1-p_{3} \leq \alpha$:
$1-\frac{1}{2}\left(\frac{45}{26}-\frac{1}{2}\right) \leq \alpha$.
$1-\frac{1}{2}\left(\frac{45}{26}-\frac{1}{2}\right)=\frac{5}{13}$.

Final Step

We get that both $\frac{32}{78}$ and $\frac{5}{13}$ are potential upper bounds.

Final Step

We get that both $\frac{32}{78}$ and $\frac{5}{13}$ are potential upper bounds.
Run VHALF on both of them to find out that $\frac{5}{13}$ is not an upper bound.

Final Step

We get that both $\frac{32}{78}$ and $\frac{5}{13}$ are potential upper bounds.
Run VHALF on both of them to find out that $\frac{5}{13}$ is not an upper bound.

So answer is $\frac{32}{78}$.

