START RECORDING

The Rule of Inclusion / Exclusion

CMSC 250

Inclusion / Exclusion Principle

- We will introduce the inclusion / exclusion principle through its two constituents:
 - Addition rule
 - Subtraction rule
 - (Ok, to be fully honest, the multiplication rule is still relevant!)

- Murad is taking CMSC420 (Data Structures)
- He has to pick **three projects total** for the course.
- The CMSC 420 projects are divided into three categories.

- Murad is taking CMSC420 (Data Structures)
- He has to pick three projects total for the course.
- The CMSC 420 projects are divided into three categories.
 - 1. Hashing (20 projects available),

- Murad is taking CMSC420 (Data Structures)
- He has to pick three projects total for the course.
- The CMSC 420 projects are divided into three categories.
 - 1. Hashing (20 projects available),
 - 2. Multi-Dimensional Indexing(15 projects available)

- Murad is taking CMSC420 (Data Structures)
- He has to pick three projects total for the course.
- The CMSC 420 projects are divided into three categories.
 - 1. Hashing (20 projects available),
 - 2. Multi-Dimensional Indexing(15 projects available)
 - 3. Data Compression (40 data compression projects available).

- Murad is taking CMSC420 (Data Structures)
- He has to pick three projects total for the course.
- The CMSC 420 projects are divided into three categories.
 - 1. Hashing (20 projects available),
 - 2. Multi-Dimensional Indexing(15 projects available)
 - 3. Data Compression (40 data compression projects available).

In how many different ways can Murad pick a project?

- Murad is taking CMSC420 (Data Structures)
- He has to pick three projects total for the course.
- The CMSC 420 projects are divided into three categories.
 - 1. Hashing (20 projects available),
 - 2. Multi-Dimensional Indexing(15 projects available)
 - 3. Data Compression (40 data compression projects available).

In how many different ways can Murad pick a project?

• By the multiplication rule: $20 \times 15 \times 40 = 12000$

- Suppose now that Murad has to pick one project for CMSC420.
- Categories are the same:
 - 1. Hashing (20 projects available),
 - 2. Multi-Dimensional Indexing(15 projects available)
 - 3. Data Compression (40 data compression projects available).

In how many different ways can Murad pick a project now?

- Suppose now that Murad has to pick one project for CMSC420.
- Categories are the same:
 - 1. Hashing (20 projects available),
 - 2. Multi-Dimensional Indexing(15 projects available)
 - 3. Data Compression (40 data compression projects available).

In how many different ways can Murad pick a project now?

• There are 20 + 15 + 40 = 75 projects available, so 75 different ways.

- Suppose now that Murad has to pick one project for CMSC420.
- Categories are the same:
 - 1. Hashing (20 projects available),
 - 2. Multi-Dimensional Indexing(15 projects available)
 - 3. Data Compression (40 data compression projects available).

In how many different ways can Murad pick a project now?

- There are 20 + 15 + 40 = 75 projects available, so 75 different ways.
- Note that if a project was shared between two categories, we'd have an overcount! (74 instead of 75)

• Suppose that we want to register for some website, and we have to pick a password.

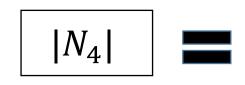
- Suppose that we want to register for some website, and we have to pick a password.
- The website's pretty old-tech, so it tells us that the password should be between 4 and 6 symbols long, with English lowercase or uppercase characters, digits, as well as any one of the "special" characters #, *, _, -, @, &, !

- Suppose that we want to register for some website, and we have to pick a password.
- The website's pretty old-tech, so it tells us that the password should be between 4 and 6 symbols long, with English lowercase or uppercase characters, digits, as well as any one of the "special" characters #, *, _, -, @, &, !
 - How many different passwords can the website store in its database?

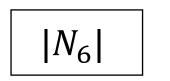
- Suppose that we want to register for some website, and we have to pick a password.
- The website's pretty old-tech, so it tells us that the password should be between 4 and 6 symbols long, with English lowercase or uppercase characters, digits, as well as any one of the "special" characters #, *, _, -, @, &, !
 - How many different passwords can the website store in its database?
 - If we call the sets of different passwords N_4 , N_5 , N_6 , we have:

$$|N_4|$$
 $|N_5|$ $|N_6|$

- Letters, lowercase and uppercase
- Digits
- #, *, _, -, @, &, !

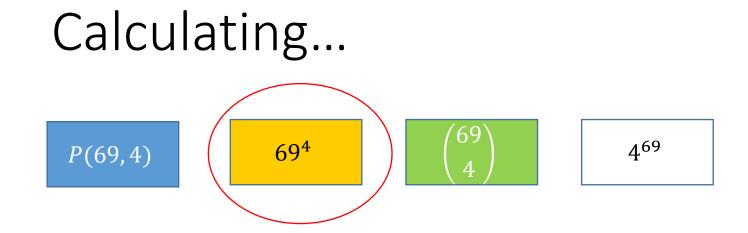


Calculating...

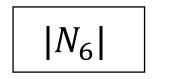


- Letters, lowercase and uppercase
- Digits
- #, *, _, -, @, &, !

 $|N_4|$

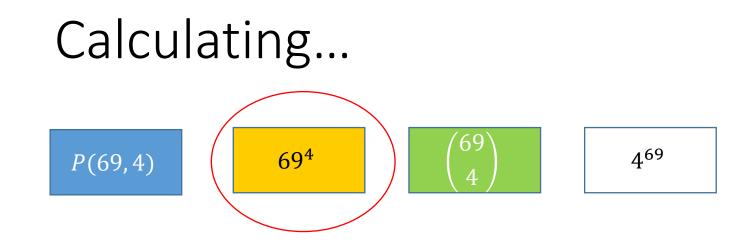


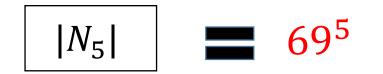
69⁴



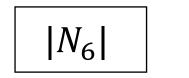
- Letters, lowercase and uppercase
- Digits
- #, *, _, -, @, &, !

 $|N_4|$



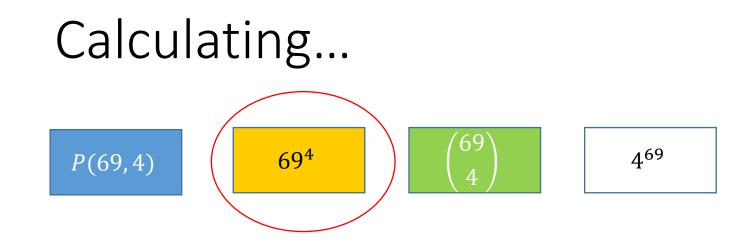


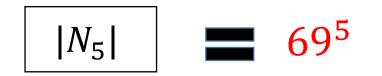
69⁴



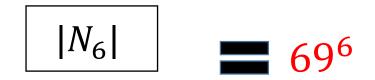
- Letters, lowercase and uppercase
- Digits
- #, *, _, -, @, &, !

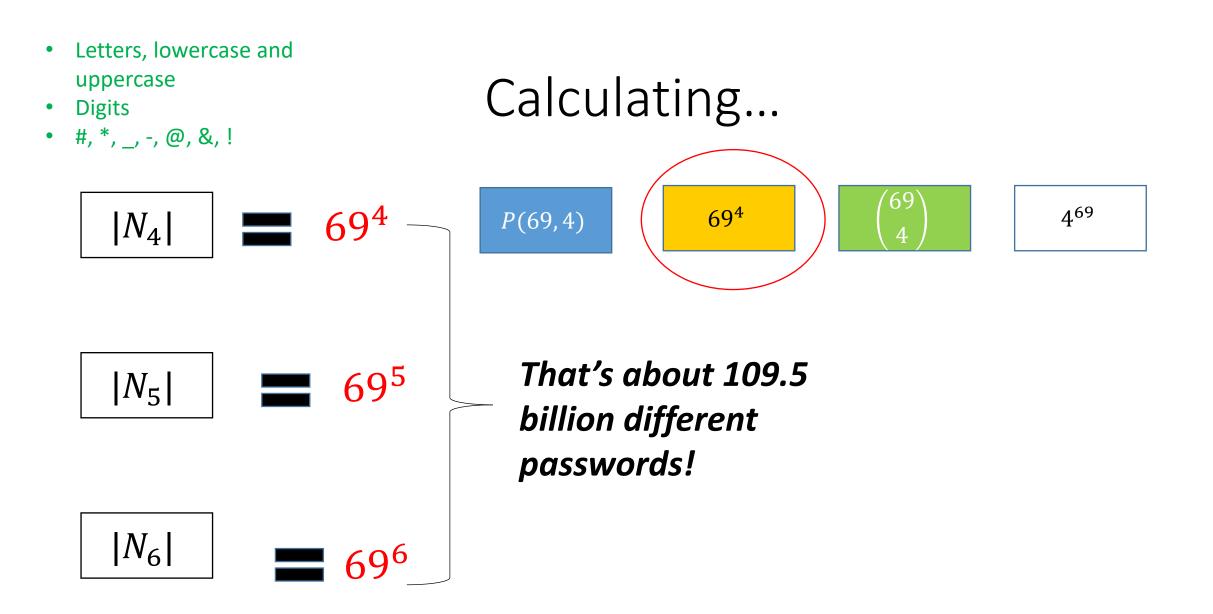
 $|N_4|$

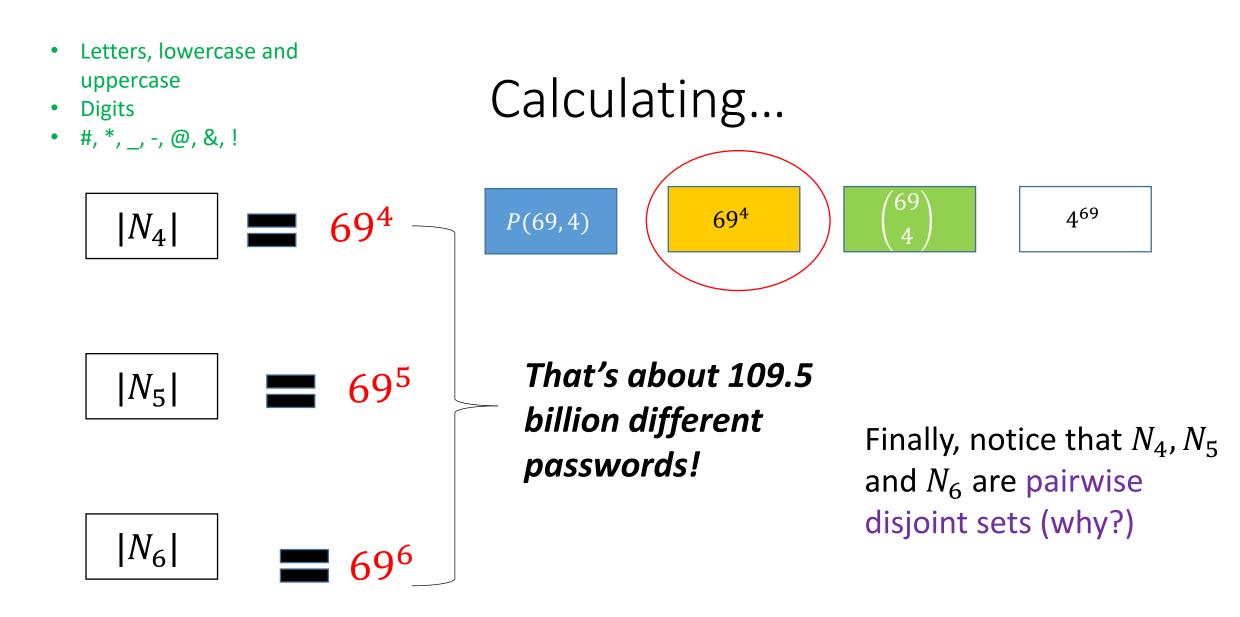




69⁴







Picking Different Passwords

• Suppose now that the website tells us that our passwords should not have repeated characters.

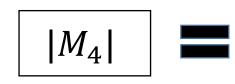
Picking Different Passwords

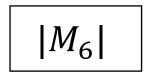
- Suppose now that the website tells us that our passwords should not have repeated characters.
- Call our new sets M_4, M_5, M_6 .

Picking Different Passwords

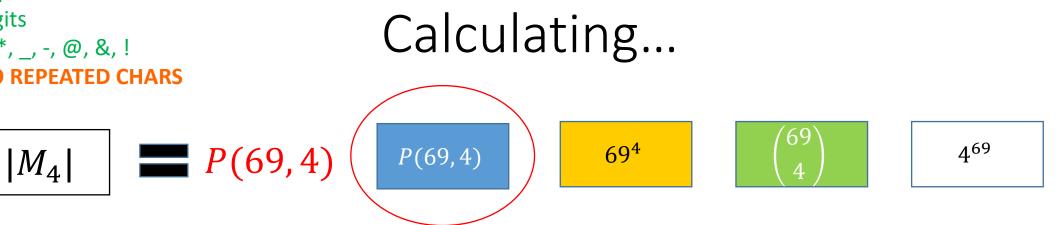
- Suppose now that the website tells us that our passwords should not have repeated characters.
- Call our new sets M_4, M_5, M_6 .
- The total #passwords is still yielded as:

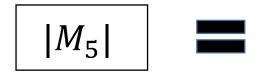
- Letters, lowercase and uppercase
- Digits
- #, *, _, -, @, &, !
- NO REPEATED CHARS

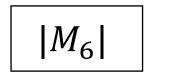




- Letters, lowercase and ٠ uppercase
- Digits
- #, *, _, -, @, &, ! •
- **NO REPEATED CHARS** •

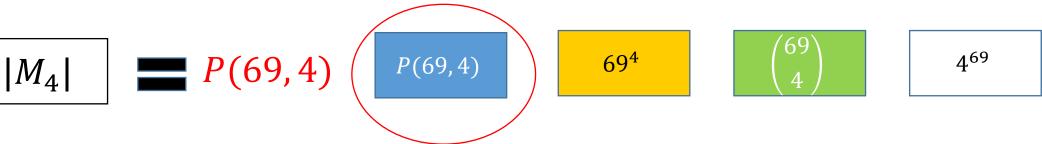


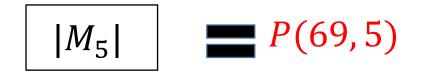


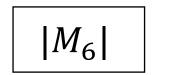


- Letters, lowercase and uppercase
- Digits
- #, *, _, -, @, &, !
- NO REPEATED CHARS

Calculating...

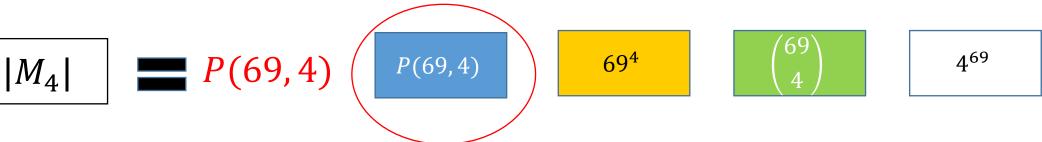


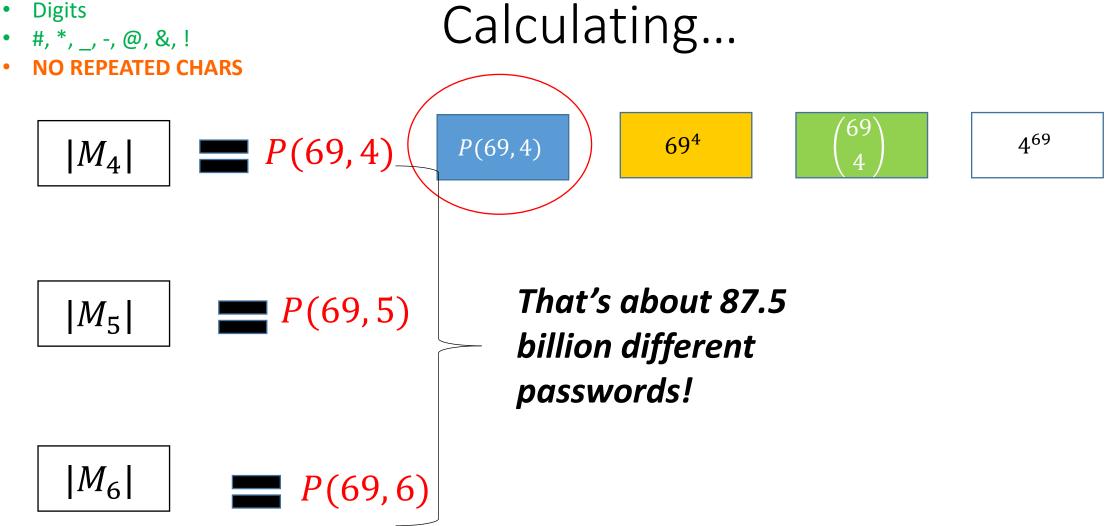


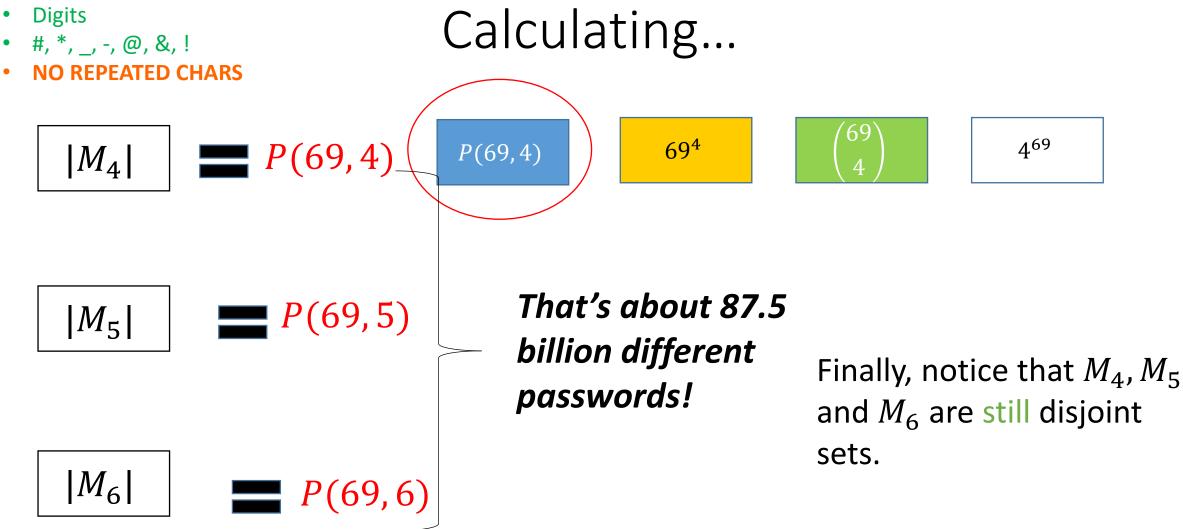


- Letters, lowercase and uppercase
- Digits
- #, *, _, -, @, &, !
- NO REPEATED CHARS

Calculating...







• The previous example was an instance of the so-called addition rule.

- The previous example was an instance of the so-called addition rule.
- Formally, the rule is stated as follows:

Let $n \in \mathbb{N}^{>0}$. If A_1, A_2, \dots, A_n are finite, pairwise disjoint sets, then

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{i=1}^n |A_i|$$

- The previous example was an instance of the so-called **addition rule**.
- Formally, the rule is stated as follows:

Let $n \in \mathbb{N}^{>0}$. If A_1, A_2, \dots, A_n are finite, pairwise disjoint sets, then

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{i=1}^n |A_i|$$

• In our examples,

$$|N_4 \cup N_5 \cup N_6| = \sum_{i=4}^6 |N_i| \quad (= 69^4 + 69^5 + 69^6)$$

- The previous example was an instance of the so-called addition rule.
- Formally, the rule is stated as follows:

Let $n \in \mathbb{N}^{>0}$. If A_1, A_2, \dots, A_n are finite, pairwise disjoint sets, then

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{i=1}^n |A_i|$$

• In our examples,

$$|N_4 \cup N_5 \cup N_6| = \sum_{i=4}^{6} |N_i| \quad (= 69^4 + 69^5 + 69^6)$$
$$|M_4 \cup M_5 \cup M_6| = \sum_{i=4}^{6} |M_i| \quad (= P(69,4) + P(69,5) + P(69,6))$$

Practice

- Once again, our passwords can use: English lowercase or uppercase characters, digits, as well as any one of the "special" characters #, *, _, -, @, &, !
 - 69 characters total.

- Once again, our passwords can use: English lowercase or uppercase characters, digits, as well as any one of the "special" characters #, *, _, -, @, &, !
 - 69 characters total.
- Alice likes passwords of length 6 that start with an 'A'.

- Once again, our passwords can use: English lowercase or uppercase characters, digits, as well as any one of the "special" characters #, *, _, -, @, &, !
 - 69 characters total.
- Alice likes passwords of length 6 that start with an 'A'.
- Bob likes passwords of length 6 that end with a 'B'.

- Once again, our passwords can use: English lowercase or uppercase characters, digits, as well as any one of the "special" characters #, *, _, -, @, &, !
 - 69 characters total.
- Alice likes passwords of length 6 that start with an 'A'.
- Bob likes passwords of length 6 that end with a 'B'.
- Both are security-conscious, so they never use the same character.

- Once again, our passwords can use: English lowercase or uppercase characters, digits, as well as any one of the "special" characters #, *, _, -, @, &, !
 - 69 characters total.
- Alice likes passwords of length 6 that start with an 'A'.
- Bob likes passwords of length 6 that end with a 'B'.
- Both are security-conscious, so they never use the same character.
- What is the total number of passwords that either Alice or Bob use?

• Call the sets of passwords that Alice uses P_A .

- Call the sets of passwords that Alice uses P_A .
 - What is $|P_A|$?

- Call the sets of passwords that Alice uses P_A .
 - What is $|P_A|$?

- Call the sets of passwords that Alice uses P_A .
 - What is $|P_A|$?

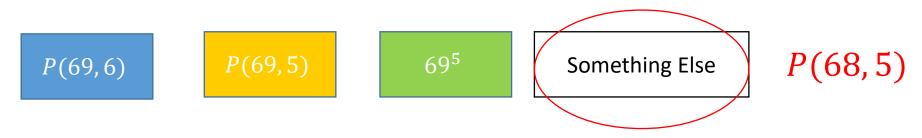
• Similarly, $|P_B| = P(68, 5)$

- Call the sets of passwords that Alice uses P_A .
 - What is $|P_A|$?

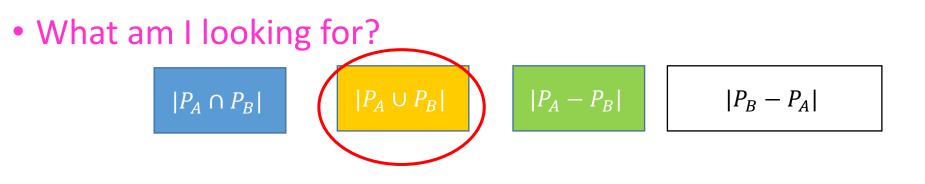
- Similarly, $|P_B| = P(68, 5)$
- What am I looking for?

• Call the sets of passwords that Alice uses P_A .

• What is $|P_A|$?



• Similarly, $|P_B| = P(68, 5)$



Remember: I'm looking for the #passwords that either Alice OR Bob use.

- You told us that we're looking for $|P_A \cup P_B|$
- By the addition rule, $|P_A \cup P_B| = |P_A| + |P_B| = 2 * P(68, 5)$

- You told us that we're looking for $|P_A \cup P_B|$
- By the addition rule, $|P_A \cup P_B| = |P_A| + |P_B| = 2 * P(68, 5)$

You've been punked!

• *A*1234*B* was counted twice!

- You told us that we're looking for $|P_A \cup P_B|$
- By the addition rule, $|P_A \cup P_B| = |P_A| + |P_B| = 2 * P(68, 5)$

You've been punked!

- A1234B was counted twice!
- Many passwords were counted twice
 - How many?

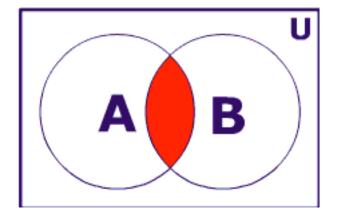
• #passwords EITHER ALICE OR BOB both like =

#passwords Alice likes

- + #passwords Bob likes
- #passwords they both like

- #passwords EITHER ALICE OR BOB both like =
 #passwords Alice likes
 + #passwords Bob likes
 - #passwords they both like
- Or, in terms of Set Theory:

 $|A \cup B| = |A| + |B| - |A \cap B|$



Need $|P_A \cap P_B|$

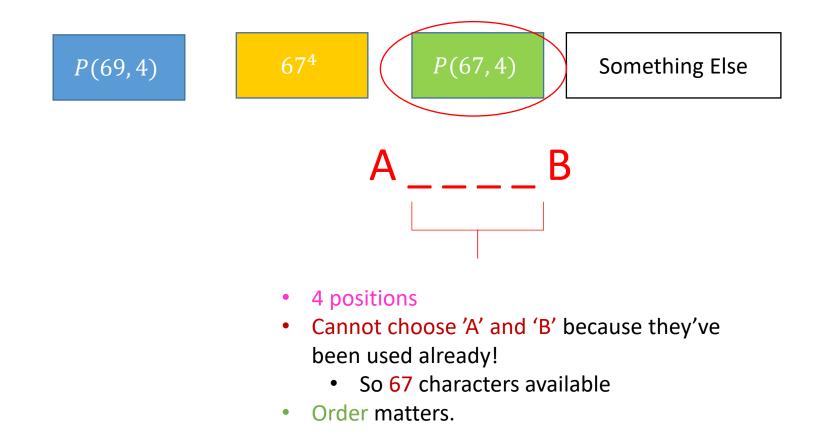
• How many passwords do both Alice and Bob like?

Need $|P_A \cap P_B|$

• How many passwords do both Alice and Bob like?

Need $|P_A \cap P_B|$

• How many passwords do both Alice and Bob like?



$|P_A \cup P_B|$

• From the rule we supplied earlier:

 $|P_A \cup P_B| = |P_A| + |P_B| - |P_A \cap P_B| = 2 * P(68, 5) - P(67, 4) =$

$$|P_A \cup P_B|$$

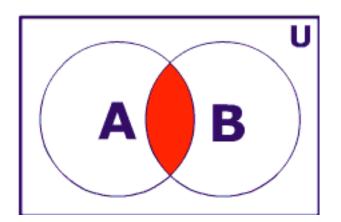
• From the rule we supplied earlier:

 $|P_A \cup P_B| = |P_A| + |P_B| - |P_A \cap P_B| = 2 * P(68, 5) - P(67, 4) =$ NOPE, WE'RE BUSY PEOPLE

General Rule

• For any finite sets *A*, *B*:

$|A \cup B| = |A| + |B| - |A \cap B|$

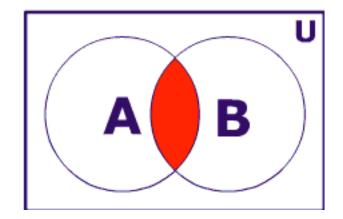


General Rule

• For any finite sets *A*, *B*:

$|A \cup B| = |A| + |B| - |A \cap B|$

• This is the inclusion-exclusion principle.



Applications

A Number-Theoretic Problem

How many numbers between 1 and 1000 are divisible by either 2 or 3?

A Number-Theoretic Problem

- How many numbers between 1 and 1000 are divisible by either 2 or 3?
- $A_2 = \{x \in \mathbb{N} | (1 \le x \le 1000) \land (x \equiv 0 \pmod{2}) \}$
- $A_3 = \{x \in \mathbb{N} | (1 \le x \le 1000) \land (x \equiv 0 \pmod{3}) \}$

A Number-Theoretic Problem

- How many numbers between 1 and 1000 are divisible by either 2 or 3?
- $A_2 = \{x \in \mathbb{N} \mid (1 \leq x \leq 1000) \land (x \equiv 0 \pmod{2})\}$
- $\bullet A_3 = \{x \in \mathbb{N} | (1 \leq x \leq 1000) \land (x \equiv 0 \; (mod \; 3))\}$
- Generally, $A_i = \{x \in \mathbb{N} | (1 \le x \le 1000) \land (x \equiv 0 \pmod{i}) \}$
- $|A_2| = \lfloor {}^{1000}/_2 \rfloor = 500$
- $|A_3| = \lfloor^{1000}/_3 \rfloor = 333$
- $|A_i| = \left\lfloor \frac{1000}{i} \right\rfloor$

A Number–Theoretic Problem

• $|A_2 \cup A_3| = |A_2| + |A_3| - |A_2 \cap A_3| = 833 - |A_2 \cap A_3|$

A Number–Theoretic Problem

|A₂ ∪ A₃| = |A₂| + |A₃| - |A₂ ∩ A₃| = 833 - |A₂ ∩ A₃|
What is the set A₂ ∩ A₃?

A Number–Theoretic Problem

- $|A_2 \cup A_3| = |A_2| + |A_3| |A_2 \cap A_3| = 833 |A_2 \cap A_3|$
 - What is the set $A_2 \cap A_3$?
 - It's just A_6 .
- $|A_6| = \lfloor {}^{1000}/_6 \rfloor = 166$
- So $|A_2 \cup A_3| = 833 166 = 667$

• Let's consider the problem of counting how many bit strings of length 8 exist such that they either start with 1 or end with 00.

- Let's consider the problem of counting how many bit strings of length 8 exist such that they either start with 1 or end with 00.
 - How many strings start with a 1?

- Let's consider the problem of counting how many bit strings of length 8 exist such that they either start with 1 or end with 00.
 - How many strings start with a 1? 2⁷

- Let's consider the problem of counting how many bit strings of length 8 exist such that they either start with 1 or end with 00.
 - How many strings start with a 1? 2⁷
 - How many strings end with 00? 2⁶

Counting Bit-Strings

- Let's consider the problem of counting how many bit strings of length 8 exist such that they either start with 1 or end with 00.
 - How many strings start with a 1? 2⁷
 - How many strings end with 00? 2⁶
 - Unfortunately, we overcount strings such as 11010100...

Counting Bit-Strings

- Let's consider the problem of counting how many bit strings of length 8 exist such that they either start with 1 or end with 00.
 - How many strings start with a 1? 2⁷
 - How many strings end with 00? 2⁶
 - Unfortunately, we overcount strings such as 11010100...
 - But we can count exactly how many those strings are!

Counting Bit-Strings

- Let's consider the problem of counting how many bit strings of length 8 exist such that they either start with 1 or end with 00.
 - How many strings start with a 1? 2⁷
 - How many strings end with 00? 2⁶
 - Unfortunately, we overcount strings such as 11010100...
 - But we can count exactly how many those strings are!
 - They are 2^5 –

Counting Bit-Strings

- Let's consider the problem of counting how many bit strings of length 8 exist such that they either start with 1 or end with 00.
 - How many strings start with a 1? 2⁷
 - How many strings end with 00? 2⁶
 - Unfortunately, we overcount strings such as 11010100...
 - But we can count exactly how many those strings are!
 - They are 2^5 –
 - Therefore, final answer = $2^7 + 2^6 2^5 = 128 + 64 32 = 160$

- Bloomberg Corp. receives 350 applications.
 - 220 are from CS majors
 - 147 are Business majors
 - 51 majored in both.
- How many majored in neither?

- Bloomberg Corp. receives 350 applications.
 - 220 are from CS majors
 - 147 are Business majors
 - 51 majored in both.
- How many majored in neither?
- Let's define some sets...

- Bloomberg Corp. receives 350 applications.
 - 220 are from CS majors
 - 147 are Business majors
 - 51 majored in both.
- How many majored in neither?
- Let's define some sets...
 - CS = set of Computer Science majors, |CS| = 220
 - B = set of Business majors, |B| = 147.
 - Then, *CS* U *B* is the set of Comp Sci **or** Business majors.

- Bloomberg Corp. receives 350 applications.
 - 220 are from CS majors
 - 147 are Business majors
 - 51 majored in both.
- How many majored in neither?
- Let's define some sets...
 - CS = set of Computer Science majors, |CS| = 220
 - B = set of Business majors, |B| = 147.
 - Then, *CS* U *B* is the set of Comp Sci **or** Business majors.
- We have that $|CS \cup B| = |CS| + |B| |CS \cap B| = 220 + 147 51 = 316$

- Bloomberg Corp. receives 350 applications.
 - 220 are from CS majors
 - 147 are Business majors
 - 51 majored in both.
- How many majored in neither?
- Let's define some sets...
 - CS = set of Computer Science majors, |CS| = 220
 - B = set of Business majors, |B| = 147.
 - Then, *CS* U *B* is the set of Comp Sci **or** Business majors.
- We have that $|CS \cup B| = |CS| + |B| |CS \cap B| = 220 + 147 51 = 316$
- So a total of 350 316 = 34 applicants were neither CS nor Business majors

• Some Discrete Mathematics students were polled about their past Computer Science & Mathematics course experience.

- Some Discrete Mathematics students were polled about their past Computer Science & Mathematics course experience.
 - 30 had taken precalculus
 - 18 had taken calculus
 - 26 had taken Java
 - 9 had taken **both** precalculus and calculus
 - 16 had taken **both** precalculus and Java
 - 8 had taken **both** calculus and Java
 - 5 had taken all three courses

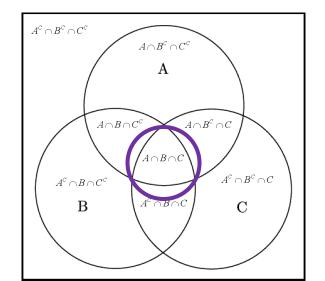
- Some Discrete Mathematics students were polled about their past Computer Science & Mathematics course experience.
 - 30 had taken precalculus
 - 18 had taken calculus
 - 26 had taken Java
 - 9 had taken **both** precalculus and calculus
 - 16 had taken **both** precalculus and Java
 - 8 had taken **both** calculus and Java
 - 5 had taken all three courses
- How many students were polled?

- P = precalc, J = Java, C = calc
- Is $|P \cup J \cup C| = |P| + |J| + |C|$?

- P = precalc, J = Java, C = calc
- Is $|P \cup J \cup C| = |P| + |J| + |C|$? NO. Overcounting strikes again.
 - We count students in $(P \cap J), (P \cap C), (J \cap C)$ twice.
- Is $|P \cup J \cup C| = |P| + |J| + |C| (|P \cap J| + |P \cap C| + |J \cap C|)$?

- P = precalc, J = Java, C = calc
- Is $|P \cup J \cup C| = |P| + |J| + |C|$? NO. Overcounting strikes again.
 - We count students in $(P \cap J)$, $(P \cap C)$, $(J \cap C)$ twice.
- Is $|P \cup J \cup C| = |P| + |J| + |C| (|P \cap J| + |P \cap C| + |J \cap C|)$?

NO. We are losing the students in $(P \cap C \cap J)!$

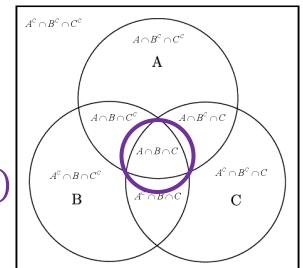


- P = precalc, J = Java, C = calc
- Is $|P \cup J \cup C| = |P| + |J| + |C|$? NO. Overcounting strikes again.
 - We count students in $(P \cap J), (P \cap C), (J \cap C)$ twice.
- Is $|P \cup J \cup C| = |P| + |J| + |C| (|P \cap J| + |P \cap C| + |J \cap C|)$?

NO. We are losing the students in $(P \cap C \cap J)!$

So we need to add them back:

 $|P \cup J \cup C| = |P| + |J| + |C| - (|P \cap J| + |P \cap C| + |J \cap C|) + (P \cap C \cap J)$



Problem givens	Translation into sets
30 had taken precalculus	P = 30
18 had taken calculus	C = 18
26 had taken Java	J = 26
9 had taken both precalculus and calculus	$ P \cap C = 9$
16 had taken both precalculus and Java	$ P \cap J = 16$
8 had taken both calculus and Java	$ J \cap C = 8$
5 had taken all three courses	$ P \cap C \cap J = 5$

Problem givens	Translation into sets
30 had taken precalculus	P = 30
18 had taken calculus	C = 18
26 had taken Java	J = 26
9 had taken both precalculus and calculus	$ P \cap C = 9$
16 had taken both precalculus and Java	$ P \cap J = 16$
8 had taken both calculus and Java	$ J \cap C = 8$
5 had taken all three courses	$ P \cap C \cap J = 5$

• We can then answer:

 $|P \cup J \cup C| = |P| + |J| + |C| - (|P \cap J| + |P \cap C| + |J \cap C|) + (P \cap C \cap J)$ = 30 + 26 + 18 - (16 + 9 + 8) + 5 = 46

A General Theorem

• For three finite sets *A*, *B*, *C*, we have:

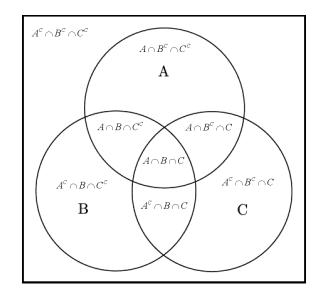
 $|A \cup B \cup C| =$ |A| + |B| + |C| - (|A \cap B| + |B \cap C| + |C \cap A|) + |A \cap B \cap C|

A General Theorem

• For three finite sets *A*, *B*, *C*, we have:

 $|A \cup B \cup C| =$ |A| + |B| + |C| - (|A \cap B| + |B \cap C| + |C \cap A|) + |A \cap B \cap C|

• This is the inclusion-exclusion principle for 3 sets.



• How many numbers between 1 and 1000 are divisible by 2,3 or 5?

- How many numbers between 1 and 1000 are divisible by 2,3 or 5?
- Recall: $A_i = \{x \in \mathbb{N} \mid (1 \le x \le 1000) \land (x \equiv 0 \pmod{i})\}$

- How many numbers between 1 and 1000 are divisible by 2,3 or 5?
- Recall: $A_i = \{x \in \mathbb{N} \mid (1 \le x \le 1000) \land (x \equiv 0 \pmod{i})\}$
- Therefore:

 $|A_2 \cup A_3 \cup A_5| =$

 $= |A_2| + |A_3| + |A_5| - (|A_2 \cap A_3| + |A_2 \cap A_5| + |A_3 \cap A_5|) + |A_2 \cap A_3 \cap A_5|$

 $= |A_2| + |A_3| + |A_5| - (|A_6| + |A_{10}| + |A_{15}|) + |A_{30}|$

 $= \left[\frac{1000}{2}\right] + \left[\frac{1000}{3}\right] + \left[\frac{1000}{5}\right] - \left(\left[\frac{1000}{6}\right] + \left[\frac{1000}{10}\right] + \left[\frac{1000}{15}\right]\right) + \left[\frac{1000}{30}\right]$

- How many numbers between 1 and 1000 are divisible by 2,3 or 5?
- Recall: $A_i = \{x \in \mathbb{N} \mid (1 \le x \le 1000) \land (x \equiv 0 \pmod{i})\}$
- Therefore:

 $|A_2 \cup A_3 \cup A_5| =$

 $= |A_2| + |A_3| + |A_5| - (|A_2 \cap A_3| + |A_2 \cap A_5| + |A_3 \cap A_5|) + |A_2 \cap A_3 \cap A_5|$

 $= |A_2| + |A_3| + |A_5| - (|A_6| + |A_{10}| + |A_{15}|) + |A_{30}|$

 $= \left[\frac{1000}{2}\right] + \left[\frac{1000}{3}\right] + \left[\frac{1000}{5}\right] - \left(\left[\frac{1000}{6}\right] + \left[\frac{1000}{10}\right] + \left[\frac{1000}{15}\right]\right) + \left[\frac{1000}{30}\right]$

= 500 + 333 + 200 - 166 - 100 - 66 + 33 = 734

• Previously, we found out that the #integers between 1 and 1000 div by 2 or 3 is 667.

- Previously, we found out that the #integers between 1 and 1000 div by 2 or 3 is 667.
- We now found out that the #integers between 1 and 1000 div by 2, 3 or 5 is 735 > 667.

- Previously, we found out that the #integers between 1 and 1000 div by 2 or 3 is 667.
- We now found out that the #integers between 1 and 1000 div by 2, 3 or 5 is 734 > 667.
- If we do the same thing for the #integers between 1 and 1000 div by 2, 3, 5 or 7, we will end up with a number between 735 and 1000.

- Previously, we found out that the #integers between 1 and 1000 div by 2 or 3 is 667.
- We now found out that the #integers between 1 and 1000 div by 2, 3 or 5 is 734 > 667.
- If we do the same thing for the #integers between 1 and 1000 div by 2, 3, 5 or 7, we will end up with a number between 735 and 1000.
- Is there a prime p between 1 and 1000 for which the #integers between 1 and 1000 div by 2, 3, 5, 7, ..., p is 1000?

- Previously, we found out that the #integers between 1 and 1000 div by 2 or 3 is 667.
- We now found out that the #integers between 1 and 1000 div by 2, 3 or 5 is 734 > 667.
- If we do the same thing for the #integers between 1 and 1000 div by 2, 3, 5 or 7, we will end up with a number between 735 and 1000.
- Is there a prime p between 1 and 1000 for which the #integers between 1 and 1000 div by 2, 3, 5, 7, ..., p is 1000?
 - Sure, the last prime before 1000! (non-constructive proof)

- Previously, we found out that the #integers between 1 and 1000 div by 2 or 3 is 667.
- We now found out that the #integers between 1 and 1000 div by 2, 3 or 5 is 734 > 667.
- If we do the same thing for the #integers between 1 and 1000 div by 2, 3, 5 or 7, we will end up with a number between 735 and 1000.
- Is there a prime p between 1 and 1000 for which the #integers between 1 and 1000 div by 2, 3, 5, 7, ..., p is 1000?
 - Sure, the last prime before 1000! (non-constructive proof)
 - If you wanted to do a constructive proof, what would you need to do?

Here's One For You (Now)

• Inclusion-Exclusion rule for 4 (four) sets A_1, A_2, A_3, A_4

Here's One For You (Now)

• Inclusion-Exclusion rule for 4 (four) sets A₁, A₂, A₃, A₄

 $|A_1 \cup A_2 \cup A_3 \cup A_4| =$

 $|A_1| + |A_2| + |A_3| + |A_4|$

 $-(|A_1 \cap A_2| + |A_1 \cap A_3| + |A_1 \cap A_4| + |A_2 \cap A_3| + |A_2 \cap A_4| + |A_3 \cap A_4|)$

 $+(|A_1 \cap A_2 \cap A_3| + |A_1 \cap A_2 \cap A_4| + |A_2 \cap A_3 \cap A_4| + |A_1 \cap A_3 \cap A_4|)$

 $-|\mathbf{A}_1 \cap A_2 \cap A_3 \cap A_4|$

STOP RECORDING