START

RECORDING

The Rule of Inclusion / Exclusion

CMSC 250

Inclusion / Exclusion Principle

- We will introduce the inclusion / exclusion principle through its two constituents:
- Addition rule
- Subtraction rule
- (Ok, to be fully honest, the multiplication rule is still relevant!)

Picking Projects

- Murad is taking CMSC420 (Data Structures)
- He has to pick three projects total for the course.
- The CMSC 420 projects are divided into three categories.

Picking Projects

- Murad is taking CMSC420 (Data Structures)
- He has to pick three projects total for the course.
- The CMSC 420 projects are divided into three categories.

1. Hashing (20 projects available),

Picking Projects

- Murad is taking CMSC420 (Data Structures)
- He has to pick three projects total for the course.
- The CMSC 420 projects are divided into three categories.

1. Hashing (20 projects available),
2. Multi-Dimensional Indexing(15 projects available)

Picking Projects

- Murad is taking CMSC420 (Data Structures)
- He has to pick three projects total for the course.
- The CMSC 420 projects are divided into three categories.

1. Hashing (20 projects available),
2. Multi-Dimensional Indexing(15 projects available)
3. Data Compression (40 data compression projects available).

Picking Projects

- Murad is taking CMSC420 (Data Structures)
- He has to pick three projects total for the course.
- The CMSC 420 projects are divided into three categories.

1. Hashing (20 projects available),
2. Multi-Dimensional Indexing(15 projects available)
3. Data Compression (40 data compression projects available).

In how many different ways can Murad pick a project?

Picking Projects

- Murad is taking CMSC420 (Data Structures)
- He has to pick three projects total for the course.
- The CMSC 420 projects are divided into three categories.

1. Hashing (20 projects available),
2. Multi-Dimensional Indexing(15 projects available)
3. Data Compression (40 data compression projects available).

In how many different ways can Murad pick a project?

- By the multiplication rule: $20 \times 15 \times 40=12000$

Picking Projects

- Suppose now that Murad has to pick one project for CMSC420.
- Categories are the same:

1. Hashing (20 projects available),
2. Multi-Dimensional Indexing(15 projects available)
3. Data Compression (40 data compression projects available).

In how many different ways can Murad pick a project now?

Picking Projects

- Suppose now that Murad has to pick one project for CMSC420.
- Categories are the same:

1. Hashing (20 projects available),
2. Multi-Dimensional Indexing(15 projects available)
3. Data Compression (40 data compression projects available).

In how many different ways can Murad pick a project now?

- There are $20+15+40=75$ projects available, so 75 different ways.

Picking Projects

- Suppose now that Murad has to pick one project for CMSC420.
- Categories are the same:

1. Hashing (20 projects available),
2. Multi-Dimensional Indexing(15 projects available)
3. Data Compression (40 data compression projects available).

In how many different ways can Murad pick a project now?

- There are $20+15+40=75$ projects available, so 75 different ways.
- Note that if a project was shared between two categories, we'd have an overcount! (74 instead of 75)

Picking Passwords

- Suppose that we want to register for some website, and we have to pick a password.

Picking Passwords

- Suppose that we want to register for some website, and we have to pick a password.
- The website's pretty old-tech, so it tells us that the password should be between 4 and 6 symbols long, with English lowercase or uppercase characters, digits, as well as any one of the "special" characters \#, *, _, -, @, \&, !

Picking Passwords

- Suppose that we want to register for some website, and we have to pick a password.
- The website's pretty old-tech, so it tells us that the password should be between 4 and 6 symbols long, with English lowercase or uppercase characters, digits, as well as any one of the "special" characters \#, *, _, -, @, \&, !
- How many different passwords can the website store in its database?

Picking Passwords

- Suppose that we want to register for some website, and we have to pick a password.
- The website's pretty old-tech, so it tells us that the password should be between 4 and 6 symbols long, with English lowercase or uppercase characters, digits, as well as any one of the "special" characters \#, *, _, -, @, \&, !
- How many different passwords can the website store in its database?
- If we call the sets of different passwords N_{4}, N_{5}, N_{6}, we have:

- Letters, lowercase and uppercase
- Digits
- \#, *, _, -, @, \& !
$\left|N_{4}\right|=$
$P(69,4)$ \square 69^{4} \square

Calculating...

$P(69,4)$	69^{4}	$\left.\begin{array}{c}69 \\ 4\end{array}\right)$

- Letters, lowercase and uppercase
- Digits
- \#, *, _, -, @, \&, !
$\left|N_{4}\right|=69^{4}$
$\left|N_{5}\right|$
$\left|N_{6}\right|$

Calculating...

- Letters, lowercase and uppercase
- Digits
- \#, *, _, -, @, \&, !

$\left|N_{5}\right|=69^{5}$
$\left|N_{6}\right|$
- Letters, lowercase and uppercase
- Digits
- \#, *, _, -, @, \&, !

$\left|N_{5}\right|=69^{5}$
$\left|N_{6}\right|$
= 69^{6}

Calculating...

- Letters, lowercase and uppercase
- Digits
- \#, *,, -, @, \& ! !

Calculating...

P(69, 4)

$\left|N_{5}\right|=69^{5}$
That's about 109.5
billion different
passwords!
$\left|N_{6}\right|$
E 69^{6}

Calculating...

That's about 109.5
billion different passwords!

Finally, notice that N_{4}, N_{5} and N_{6} are pairwise disjoint sets (why?)

Picking Different Passwords

- Suppose now that the website tells us that our passwords should not have repeated characters.

Picking Different Passwords

- Suppose now that the website tells us that our passwords should not have repeated characters.
- Call our new sets M_{4}, M_{5}, M_{6}.

Picking Different Passwords

- Suppose now that the website tells us that our passwords should not have repeated characters.
- Call our new sets M_{4}, M_{5}, M_{6}.
- The total \#passwords is still yielded as:

- Letters, lowercase and uppercase
- Digits
- \#, *, _, -, @, \&, !
- NO REPEATED CHARS

Calculating...

$P(69,4)$	69^{4}

$\binom{69}{4} \quad 4^{69}$

$$
\left|M_{5}\right|
$$

=
$\left|M_{6}\right|$

- Letters, lowercase and uppercase
- Digits
- \#, *, _, -, @, \&, !

Calculating...

- NO REPEATED CHARS

$\left|M_{5}\right|$
$\left|M_{6}\right|$
- Letters, lowercase and uppercase
- Digits
- \#, *, _, -, @, \&, !

Calculating...

- NO REPEATED CHARS

$$
\left|M_{5}\right|=P(69,5)
$$

$\left|M_{6}\right|$

- Letters, lowercase and uppercase
- Digits
- \#, *, _, -, @, \&, !

Calculating...

- NO REPEATED CHARS

$$
\left|M_{5}\right|=P(69,5)
$$

$\left|M_{6}\right|=P(69,6)$

- Letters, lowercase and uppercase
- Digits
- \#, *, _, -, @, \& !
- NO REPEATED CHARS

$\left|M_{5}\right|=P(69,5)$
That's about 87.5
billion different passwords!
- Letters, lowercase and uppercase
- Digits
- \#, *, _, -, @, \&, !
- NO REPEATED CHARS

$\left|M_{5}\right|=P(69,5)$
That's about 87.5
billion different passwords!

Finally, notice that M_{4}, M_{5} and M_{6} are still disjoint sets.

The Addition Rule

- The previous example was an instance of the so-called addition rule.

The Addition Rule

- The previous example was an instance of the so-called addition rule.
- Formally, the rule is stated as follows:

Let $n \in \mathbb{N}^{>0}$. If $A_{1}, A_{2}, \ldots, A_{n}$ are finite, pairwise disjoint sets, then

$$
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=\sum_{i=1}^{n}\left|A_{i}\right|
$$

The Addition Rule

- The previous example was an instance of the so-called addition rule.
- Formally, the rule is stated as follows:

Let $n \in \mathbb{N}^{>0}$. If $A_{1}, A_{2}, \ldots, A_{n}$ are finite, pairwise disjoint sets, then

$$
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=\sum_{i=1}^{n}\left|A_{i}\right|
$$

- In our examples,

$$
\left|N_{4} \cup N_{5} \cup N_{6}\right|=\sum_{i=4}^{6}\left|N_{i}\right| \quad\left(=69^{4}+69^{5}+69^{6}\right)
$$

The Addition Rule

- The previous example was an instance of the so-called addition rule.
- Formally, the rule is stated as follows:

Let $n \in \mathbb{N}^{>0}$. If $A_{1}, A_{2}, \ldots, A_{n}$ are finite, pairwise disjoint sets, then

$$
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=\sum_{i=1}^{n}\left|A_{i}\right|
$$

- In our examples,

$$
\begin{gathered}
\left|N_{4} \cup N_{5} \cup N_{6}\right|=\sum_{i=4}^{6}\left|N_{i}\right|\left(=69^{4}+69^{5}+69^{6}\right) \\
\left|M_{4} \cup M_{5} \cup M_{6}\right|=\sum_{i=4}^{6}\left|M_{i}\right|(=\mathrm{P}(69,4)+\mathrm{P}(69,5)+\mathrm{P}(69,6))
\end{gathered}
$$

Practice

- Once again, our passwords can use: English lowercase or uppercase characters, digits, as well as any one of the "special" characters \#, *, _, - @, \& !
- 69 characters total.

Practice

- Once again, our passwords can use: English lowercase or uppercase characters, digits, as well as any one of the "special" characters \#, *, _, - @, \& !
- 69 characters total.
- Alice likes passwords of length 6 that start with an ' A '.

Practice

- Once again, our passwords can use: English lowercase or uppercase characters, digits, as well as any one of the "special" characters \#, *, _, - @, \& !
- 69 characters total.
- Alice likes passwords of length 6 that start with an ' A '.
- Bob likes passwords of length 6 that end with a ' B '.

Practice

- Once again, our passwords can use: English lowercase or uppercase characters, digits, as well as any one of the "special" characters \#, *, , - - @, \& !
- 69 characters total.
- Alice likes passwords of length 6 that start with an ' A '.
- Bob likes passwords of length 6 that end with a ' B '.
- Both are security-conscious, so they never use the same character.

Practice

- Once again, our passwords can use: English lowercase or uppercase characters, digits, as well as any one of the "special" characters \#, *, , -, @, \& !
- 69 characters total.
- Alice likes passwords of length 6 that start with an ' A '.
- Bob likes passwords of length 6 that end with a ' B '.
- Both are security-conscious, so they never use the same character.
- What is the total number of passwords that either Alice or Bob use?

Practice

- Call the sets of passwords that Alice uses P_{A}.

Practice

- Call the sets of passwords that Alice uses P_{A}.
- What is $\left|P_{A}\right|$?

```
\(P(69,6)\)
```


69^{5}
Something Else

Practice

- Call the sets of passwords that Alice uses P_{A}.
- What is $\left|P_{A}\right|$?

```
\(P(69,6)\)
```


Practice

- Call the sets of passwords that Alice uses P_{A}.
- What is $\left|P_{A}\right|$?

- Similarly, $\left|P_{B}\right|=P(68,5)$

Practice

- Call the sets of passwords that Alice uses P_{A}.
- What is $\left|P_{A}\right|$?

```
P(69,6)
```


- Similarly, $\left|P_{B}\right|=P(68,5)$
-What am I looking for?

Practice

- Call the sets of passwords that Alice uses P_{A}.
- What is $\left|P_{A}\right|$?

```
P(69,6)
```


- Similarly, $\left|P_{B}\right|=P(68,5)$
- What am I looking for?

Remember: I'm looking for the \#passwords that either Alice OR Bob use.

Practice

- You told us that we're looking for $\left|P_{A} \cup P_{B}\right|$
- By the addition rule, $\left|P_{A} \cup P_{B}\right|=\left|P_{A}\right|+\left|P_{B}\right|=2 * P(68,5)$

Practice

- You told us that we're looking for $\left|P_{A} \cup P_{B}\right|$
- By the addition rule, $\left|P_{A} \cup P_{B}\right|=\left|P_{A}\right|+\left|P_{B}\right|=2 * P(68,5)$

You've been punked!

- $A 1234 B$ was counted twice!

Practice

- You told us that we're looking for $\left|P_{A} \cup P_{B}\right|$
- By the addition rule, $\left|P_{A} \cup P_{B}\right|=\left|P_{A}\right|+\left|P_{B}\right|=2 * P(68,5)$

You've been punked!

- $A 1234 B$ was counted twice!
- Many passwords were counted twice
- How many?

Practice

- \#passwords EITHER ALICE OR BOB both like = \#passwords Alice likes
+ \#passwords Bob likes
- \#passwords they both like

Practice

- \#passwords EITHER ALICE OR BOB both like =

\#passwords Alice likes
 + \#passwords Bob likes
 - \#passwords they both like

- Or, in terms of Set Theory:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Need $\left|P_{A} \cap P_{B}\right|$

- How many passwords do both Alice and Bob like?

Need $\left|P_{A} \cap P_{B}\right|$

- How many passwords do both Alice and Bob like?

```
\(P(69,4)\)
```


P(67, 4)
Something Else

Need $\left|P_{A} \cap P_{B}\right|$

- How many passwords do both Alice and Bob like?

- 4 positions
- Cannot choose ' A ' and ' B ' because they've been used already!
- So 67 characters available
- Order matters.

$\left|P_{A} \cup P_{B}\right|$

- From the rule we supplied earlier:

$$
\left|P_{A} \cup P_{B}\right|=\left|P_{A}\right|+\left|P_{B}\right|-\left|P_{A} \cap P_{B}\right|=2 * P(68,5)-P(67,4)=
$$

$\left|P_{A} \cup P_{B}\right|$

- From the rule we supplied earlier:

$$
\begin{array}{rl}
\left|P_{A} \cup P_{B}\right|=\left|P_{A}\right|+\left|P_{B}\right|-\left|P_{A} \cap P_{B}\right|=2 & * P(68,5)-P(67,4)= \\
& \text { NOPE, WE'RE BUSY PEOPLE }
\end{array}
$$

General Rule

- For any finite sets A, B :

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

General Rule

- For any finite sets A, B :

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

- This is the inclusion-exclusion principle.

Applications

A Number-Theoretic Problem

- How many numbers between 1 and 1000 are divisible by either 2 or 3 ?

A Number-Theoretic Problem

- How many numbers between 1 and 1000 are divisible by either 2 or 3 ?
- $A_{2}=\{x \in \mathbb{N} \mid(1 \leq x \leq 1000) \wedge(x \equiv 0(\bmod 2))\}$
- $A_{3}=\{x \in \mathbb{N} \mid(1 \leq x \leq 1000) \wedge(x \equiv 0(\bmod 3))\}$

A Number-Theoretic Problem

- How many numbers between 1 and 1000 are divisible by either 2 or 3 ?
- $A_{2}=\{x \in \mathbb{N} \mid(1 \leq x \leq 1000) \wedge(x \equiv 0(\bmod 2))\}$
- $A_{3}=\{x \in \mathbb{N} \mid(1 \leq x \leq 1000) \wedge(x \equiv 0(\bmod 3))\}$
- Generally, $A_{i}=\{x \in \mathbb{N} \mid(1 \leq x \leq 1000) \wedge(x \equiv 0(\bmod i))\}$
- $\left|A_{2}\right|=\left\lfloor{ }^{1000} / 2\right\rfloor=500$
- $\left|A_{3}\right|=\lfloor 1000 / 3\rfloor=333$
- $\left|A_{i}\right|=\lfloor 1000 / i\rfloor$

A Number-Theoretic Problem

$\cdot\left|A_{2} \cup A_{3}\right|=\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{2} \cap A_{3}\right|=833-\left|A_{2} \cap A_{3}\right|$

A Number-Theoretic Problem

- $\left|A_{2} \cup A_{3}\right|=\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{2} \cap A_{3}\right|=833-\left|A_{2} \cap A_{3}\right|$
\cdot What is the set $A_{2} \cap A_{3}$?

A Number-Theoretic Problem

- $\left|A_{2} \cup A_{3}\right|=\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{2} \cap A_{3}\right|=833-\left|A_{2} \cap A_{3}\right|$
- What is the set $A_{2} \cap A_{3}$?
- It's just A_{6}.
- $\left|A_{6}\right|=\lfloor 1000 / 6\rfloor=166$
- So $\left|A_{2} \cup A_{3}\right|=833-166=667$

Counting Bit-Strings (for you to do NOW)

- Let's consider the problem of counting how many bit strings of length 8 exist such that they either start with 1 or end with 00.

Counting Bit-Strings (for you to do NOW)

- Let's consider the problem of counting how many bit strings of length 8 exist such that they either start with 1 or end with 00.
- How many strings start with a 1 ?

Counting Bit-Strings (for you to do NOW)

- Let's consider the problem of counting how many bit strings of length 8 exist such that they either start with 1 or end with 00.
- How many strings start with a 1 ? 2^{7}

Counting Bit-Strings (for you to do NOW)

- Let's consider the problem of counting how many bit strings of length 8 exist such that they either start with 1 or end with 00.
- How many strings start with a 1 ? 2^{7}
- How many strings end with 00 ? 2^{6}

Counting Bit-Strings

- Let's consider the problem of counting how many bit strings of length 8 exist such that they either start with 1 or end with 00.
- How many strings start with a 1 ? 2^{7}
- How many strings end with 00 ? 2^{6}
- Unfortunately, we overcount strings such as 11010100...

Counting Bit-Strings

- Let's consider the problem of counting how many bit strings of length 8 exist such that they either start with 1 or end with 00.
- How many strings start with a 1 ? 2^{7}
- How many strings end with 00 ? 2^{6}
- Unfortunately, we overcount strings such as 11010100...
- But we can count exactly how many those strings are!

Counting Bit-Strings

- Let's consider the problem of counting how many bit strings of length 8 exist such that they either start with 1 or end with 00.
- How many strings start with a 1 ? 2^{7}
- How many strings end with 00 ? 2^{6}
- Unfortunately, we overcount strings such as 11010100...
- But we can count exactly how many those strings are!
- They are 2^{5}

Counting Bit-Strings

- Let's consider the problem of counting how many bit strings of length 8 exist such that they either start with 1 or end with 00.
- How many strings start with a 1 ? 2^{7}
- How many strings end with 00 ? 2^{6}
- Unfortunately, we overcount strings such as 11010100...
- But we can count exactly how many those strings are!
- They are 2^{5}
- Therefore, final answer $=2^{7}+2^{6}-2^{5}=128+64-32=160$ ().

Practice (For You)

- Bloomberg Corp. receives 350 applications.
- 220 are from CS majors
- 147 are Business majors
- 51 majored in both.
- How many majored in neither?

Practice (For You)

- Bloomberg Corp. receives 350 applications.
- 220 are from CS majors
- 147 are Business majors
- 51 majored in both.
- How many majored in neither?
- Let's define some sets...

Practice (For You)

- Bloomberg Corp. receives 350 applications.
- 220 are from CS majors
- 147 are Business majors
- 51 majored in both.
- How many majored in neither?
- Let's define some sets...
- $C S=$ set of Computer Science majors, $|C S|=220$
- $\mathrm{B}=$ set of Business majors, $|\mathrm{B}|=147$.
- Then, $C S \cup B$ is the set of Comp Sci or Business majors.

Practice (For You)

- Bloomberg Corp. receives 350 applications.
- 220 are from CS majors
- 147 are Business majors
- 51 majored in both.
- How many majored in neither?
- Let's define some sets...
- $C S=$ set of Computer Science majors, $|C S|=220$
- $\mathrm{B}=$ set of Business majors, $|\mathrm{B}|=147$.
- Then, $C S \cup B$ is the set of Comp Sci or Business majors.
- We have that $|C S \cup B|=|C S|+|B|-|C S \cap B|=220+147-51=316$

Practice (For You)

- Bloomberg Corp. receives 350 applications.
- 220 are from CS majors
- 147 are Business majors
- 51 majored in both.
- How many majored in neither?
- Let's define some sets...
- CS = set of Computer Science majors, $|C S|=220$
- $\mathrm{B}=$ set of Business majors, $|\mathrm{B}|=147$.
- Then, $C S \cup B$ is the set of Comp Sci or Business majors.
- We have that $|C S \cup B|=|C S|+|B|-|C S \cap B|=220+147-51=316$
- So a total of $350-316=34$ applicants were neither CS nor Business majors

A More Complex Problem

- Some Discrete Mathematics students were polled about their past Computer Science \& Mathematics course experience.

A More Complex Problem

- Some Discrete Mathematics students were polled about their past Computer Science \& Mathematics course experience.
- 30 had taken precalculus
- 18 had taken calculus
- 26 had taken Java
- 9 had taken both precalculus and calculus
- 16 had taken both precalculus and Java
- 8 had taken both calculus and Java
- 5 had taken all three courses

A More Complex Problem

- Some Discrete Mathematics students were polled about their past Computer Science \& Mathematics course experience.
- 30 had taken precalculus
- 18 had taken calculus
- 26 had taken Java
- 9 had taken both precalculus and calculus
- 16 had taken both precalculus and Java
- 8 had taken both calculus and Java
- 5 had taken all three courses
- How many students were polled?

A More Complex Problem

- $\mathrm{P}=$ precalc, $\mathrm{J}=$ Java, $\mathrm{C}=$ calc
- Is $|P \cup J \cup C|=|P|+|J|+|C|$?

A More Complex Problem

- $\mathrm{P}=$ precalc, $\mathrm{J}=$ Java, $\mathrm{C}=$ calc
- Is $|P \cup J \cup C|=|P|+|J|+|C|$? NO. Overcounting strikes again.
- We count students in $(P \cap J),(P \cap C),(J \cap C)$ twice.
- Is $|P \cup J \cup C|=|P|+|J|+|C|-(|P \cap J|+|P \cap C|+|J \cap C|)$?

A More Complex Problem

- $\mathrm{P}=$ precalc, $\mathrm{J}=$ Java, $\mathrm{C}=$ calc
- Is $|P \cup J \cup C|=|P|+|J|+|C|$? NO. Overcounting strikes again.
- We count students in $(P \cap J),(P \cap C),(J \cap C)$ twice.
- Is $|P \cup J \cup C|=|P|+|J|+|C|-(|P \cap J|+|P \cap C|+|J \cap C|)$? NO. We are losing the students in $(P \cap C \cap J)$!

A More Complex Problem

- $\mathrm{P}=$ precalc, $\mathrm{J}=$ Java, $\mathrm{C}=$ calc
- Is $|P \cup J \cup C|=|P|+|J|+|C|$? NO. Overcounting strikes again.
- We count students in $(P \cap J),(P \cap C),(J \cap C)$ twice.
- Is $|P \cup J \cup C|=|P|+|J|+|C|-(|P \cap J|+|P \cap C|+|J \cap C|)$?

NO. We are losing the students in $(P \cap C \cap J)$!
So we need to add them back:
$|P \cup J \cup C|=$
$|P|+|J|+|C|-(|P \cap J|+|P \cap C|+|J \cap C|)+(P \cap C \cap J)$

A More Complex Problem

Problem givens	Translation into sets
30 had taken precalculus	$\|P\|=30$
18 had taken calculus	$\|C\|=18$
26 had taken Java	$\|J\|=26$
9 had taken both precalculus and calculus	$\|P \cap C\|=9$
16 had taken both precalculus and Java	$\|P \cap J\|=16$
8 had taken both calculus and Java	$\|J \cap C\|=8$
5 had taken all three courses	$\|P \cap C \cap J\|=5$

A More Complex Problem

Problem givens	Translation into sets
30 had taken precalculus	$\|P\|=30$
18 had taken calculus	$\|C\|=18$
26 had taken Java	$\|J\|=26$
9 had taken both precalculus and calculus	$\|P \cap C\|=9$
16 had taken both precalculus and Java	$\|P \cap J\|=16$
8 had taken both calculus and Java	$\|J \cap C\|=8$
5 had taken all three courses	$\|P \cap C \cap J\|=5$

- We can then answer:

$$
\begin{aligned}
|\boldsymbol{P} \cup \boldsymbol{J} \cup \boldsymbol{C}| & =|P|+|J|+|C|-(|P \cap J|+|P \cap C|+|J \cap C|)+(\boldsymbol{P} \cap \boldsymbol{C} \cap \boldsymbol{J}) \\
& =30+26+18-(16+9+8)+5=\mathbf{4 6}
\end{aligned}
$$

A General Theorem

- For three finite sets A, B, C, we have:

$$
\begin{gathered}
|A \cup B \cup C|= \\
|A|+|B|+|C|-(|A \cap B|+|B \cap C|+|C \cap A|)+|A \cap B \cap C|
\end{gathered}
$$

A General Theorem

- For three finite sets A, B, C, we have:

$$
\begin{gathered}
|A \cup B \cup C|= \\
|A|+|B|+|C|-(|A \cap B|+|B \cap C|+|C \cap A|)+|A \cap B \cap C|
\end{gathered}
$$

- This is the inclusion-exclusion principle for 3 sets.

Divisibility Problem Again (For You, Now)

- How many numbers between 1 and 1000 are divisible by 2,3 or 5 ?

Divisibility Problem Again (For You, Now)

- How many numbers between 1 and 1000 are divisible by 2,3 or 5 ?
- Recall: $A_{i}=\{x \in \mathbb{N} \mid(1 \leq x \leq 1000) \wedge(x \equiv 0(\bmod i)\}$

Divisibility Problem Again (For You, Now)

- How many numbers between 1 and 1000 are divisible by 2,3 or 5 ?
- Recall: $A_{i}=\{x \in \mathbb{N} \mid(1 \leq x \leq 1000) \wedge(x \equiv 0(\bmod i)\}$
- Therefore:

$$
\begin{gathered}
\left|A_{2} \cup A_{3} \cup A_{5}\right|= \\
=\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{5}\right|-\left(\left|A_{2} \cap A_{3}\right|+\left|A_{2} \cap A_{5}\right|+\left|A_{3} \cap A_{5}\right|\right)+\left|A_{2} \cap A_{3} \cap A_{5}\right| \\
=\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{5}\right|-\left(\left|A_{6}\right|+\left|A_{10}\right|+\left|A_{15}\right|\right)+\left|A_{30}\right| \\
=\lfloor 1000 / 2\rfloor+\lfloor 1000 / 3\rfloor+\lfloor 1000 / 5\rfloor-(\lfloor 1000 / 6\rfloor+\lfloor 1000 / 10\rfloor+\lfloor 1000 / 15 \mid)+\lfloor 1000 / 30\rfloor
\end{gathered}
$$

Divisibility Problem Again (For You, Now)

- How many numbers between 1 and 1000 are divisible by 2,3 or 5 ?
- Recall: $A_{i}=\{x \in \mathbb{N} \mid(1 \leq x \leq 1000) \wedge(x \equiv 0(\bmod i)\}$
- Therefore:

$$
\begin{gathered}
\left|A_{2} \cup A_{3} \cup A_{5}\right|= \\
=\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{5}\right|-\left(\left|A_{2} \cap A_{3}\right|+\left|A_{2} \cap A_{5}\right|+\left|A_{3} \cap A_{5}\right|\right)+\left|A_{2} \cap A_{3} \cap A_{5}\right| \\
=\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{5}\right|-\left(\left|A_{6}\right|+\left|A_{10}\right|+\left|A_{15}\right|\right)+\left|A_{30}\right| \\
=\lfloor 1000 / 2\rfloor+\lfloor 1000 / 3 \mid+\lfloor 1000 / 5\rfloor-(\lfloor 1000 / 6|+|1000 / 10|+|1000 / 15|)+|1000 / 30| \\
=500+333+200-166-100-66+33=734
\end{gathered}
$$

Question For You

- Previously, we found out that the \#integers between 1 and 1000 div by 2 or 3 is 667 .

Question For You

- Previously, we found out that the \#integers between 1 and 1000 div by 2 or 3 is 667 .
- We now found out that the \#integers between 1 and 1000 div by 2, 3 or 5 is $735>667$.

Question For You

- Previously, we found out that the \#integers between 1 and 1000 div by 2 or 3 is 667 .
- We now found out that the \#integers between 1 and 1000 div by 2,3 or 5 is $734>667$.
- If we do the same thing for the \#integers between 1 and 1000 div by $2,3,5$ or 7 , we will end up with a number between 735 and 1000 .

Question For You

- Previously, we found out that the \#integers between 1 and 1000 div by 2 or 3 is 667 .
- We now found out that the \#integers between 1 and 1000 div by 2,3 or 5 is $734>667$.
- If we do the same thing for the \#integers between 1 and 1000 div by $2,3,5$ or 7 , we will end up with a number between 735 and 1000.
- Is there a prime p between 1 and 1000 for which the \#integers between 1 and 1000 div by $2,3,5,7, \ldots, p$ is 1000 ?

Question For You

- Previously, we found out that the \#integers between 1 and 1000 div by 2 or 3 is 667 .
- We now found out that the \#integers between 1 and 1000 div by 2,3 or 5 is $734>667$.
- If we do the same thing for the \#integers between 1 and 1000 div by $2,3,5$ or 7 , we will end up with a number between 735 and 1000.
- Is there a prime p between 1 and 1000 for which the \#integers between 1 and 1000 div by $2,3,5,7, \ldots, p$ is 1000 ?
- Sure, the last prime before 1000 ! (non-constructive proof)

Question For You

- Previously, we found out that the \#integers between 1 and 1000 div by 2 or 3 is 667 .
- We now found out that the \#integers between 1 and 1000 div by 2,3 or 5 is $734>667$.
- If we do the same thing for the \#integers between 1 and 1000 div by $2,3,5$ or 7 , we will end up with a number between 735 and 1000.
- Is there a prime p between 1 and 1000 for which the \#integers between 1 and 1000 div by $2,3,5,7, \ldots, p$ is 1000 ?
- Sure, the last prime before 1000! (non-constructive proof)
- If you wanted to do a constructive proof, what would you need to do?

Here's One For You (Now)

- Inclusion-Exclusion rule for 4 (four) sets $A_{1}, A_{2}, A_{3}, A_{4}$

Here's One For You (Now)

- Inclusion-Exclusion rule for 4 (four) sets $A_{1}, A_{2}, A_{3}, A_{4}$

$$
\begin{aligned}
& \left|A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right|= \\
& \qquad\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{4}\right| \\
& -\left(\left|A_{1} \cap A_{2}\right|+\left|A_{1} \cap A_{3}\right|+\left|A_{1} \cap A_{4}\right|+\left|A_{2} \cap A_{3}\right|+\left|A_{2} \cap A_{4}\right|+\left|A_{3} \cap A_{4}\right|\right) \\
& +\left(\left|A_{1} \cap A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{2} \cap A_{4}\right|+\left|A_{2} \cap A_{3} \cap A_{4}\right|+\left|A_{1} \cap A_{3} \cap A_{4}\right|\right) \\
& \quad-\left|\mathrm{A}_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right|
\end{aligned}
$$

STOP

RECORDING

