START

RECORDING

k-nomial Theorem and Pascal's Triangle

CMSC 250

The Binomial Theorem and Some Computational Challenges

The Binomial Theorem

- Recall the following identities from highschool:
- $(x+y)^{2}=x^{2}+2 x y+y^{2}$
- $(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$
- $(x+y)^{4}=x^{4}+4 x^{3} y^{1}+6 x^{2} y^{2}+4 x^{1} y^{3}+y^{4}$

The Binomial Theorem

- Recall the following identities from highschool:
- $(x+y)^{2}=1 x^{2}+2 x y+1 y^{2}$
- $(x+y)^{3}=1 x^{3}+3 x^{2} y+3 x y^{2}+1 y^{3}$
- $(x+y)^{4}=1 x^{4}+4 x^{2} y^{2}+6 x^{2} y^{2}+4 x^{2} y^{2}+1 y^{4}$
- Is there a pattern here? Can we easily generate the coefficients?

The Binomial Theorem

- Recall the following identities from highschool:
- $(x+y)^{2}=1 x^{2}+2 x y+1 y^{2}$
- $(x+y)^{3}=1 x^{3}+3 x^{2} y+3 x y^{2}+1 y^{3}$
- $(x+y)^{4}=1 x^{4}+4 x^{3} y^{1}+6 x^{2} y^{2}+4 x^{1} y^{3}+1 y^{4}$
- Is there a pattern here? Can we easily generate the coefficients?
- (Some of you might already know how, but we doubt that you know why)

$(x+y)^{5}$

- $(x+y)^{5}=(x+y) \cdot(x+y) \cdot(x+y) \cdot(x+y) \cdot(x+y)$
- What is the coefficient of $x^{2} y^{3}$?

$(x+y)^{5}$

- $(x+y)^{5}=(x+y) \cdot(x+y) \cdot(x+y) \cdot(x+y) \cdot(x+y)$
- What is the coefficient of $x^{2} y^{3}$?
- There are $2^{5}=32$ terms total (many combine, eg $x x y y y, x y x y y$ are both of form $x^{2} y^{3}$).

$(x+y)^{5}$

- $(x+y)^{5}=(x+y) \cdot(x+y) \cdot(x+y) \cdot(x+y) \cdot(x+y)$
- What is the coefficient of $x^{2} y^{3}$?
- There are $2^{5}=32$ terms total (many combine, eg $x x y y y, x y x y y$ are both of form $x^{2} y^{3}$).
- How many of those terms have 2 ' x 's and 3 ' y 's?

$(x+y)^{5}$

- $(x+y)^{5}=(x+y) \cdot(x+y) \cdot(x+y) \cdot(x+y) \cdot(x+y)$

$$
\begin{array}{cccc}
\text { xxyyy, } & \text { xyxyy, } & \text { xyyxy, } & \text { xyyyx, } \\
\text { yxxyy, } & \text { yxyxy, } & \text { yxyyx, } & \\
\text { yyxxy, } & \text { yyxyx, } & & \\
\text { yyyxx } & & &
\end{array}
$$

$(x+y)^{5}$

- $(x+y)^{5}=(x+y) \cdot(x+y) \cdot(x+y) \cdot(x+y) \cdot(x+y)$

$$
\begin{array}{cccc}
\text { xxyyy, } & \text { xyxyy, } & \text { xyyxy, } & \text { xyyyx, } \\
\text { yxxyy, } & \text { yxyxy, } & \text { yxyyx, } & \\
\text { yyxxy, } & \text { yyxyx, } & & \\
\text { yyyxx } & & &
\end{array}
$$

$(x+y)^{5}$

- $(x+y)^{5}=(x+y) \cdot(x+y) \cdot(x+y) \cdot(x+y) \cdot(x+y)$

$$
\begin{array}{cccc}
\text { xxyyy, } & \text { xyxyy, } & \text { xyyxy, } & \text { xyyyx, } \\
\text { yxxyy, } & \text { yxyxy, } & \text { yxyyx, } & \\
\text { yyxxy, } & \text { yyxyx, } & & \\
\text { yyyxx } & & &
\end{array}
$$

- This is just choosing 2 slots out of 5 to put the ' x 's in.

$(x+y)^{5}$

- $(x+y)^{5}=(x+y) \cdot(x+y) \cdot(x+y) \cdot(x+y) \cdot(x+y)$

xxyyy,	xyxyy,	xyyxy,	xyyyx,
yxxyy,	yxyxy,	yxyyx,	
yyxxy,	yyxyx,		
yyyxx			

All terms of form $x^{2} y^{3}$

- This is just choosing 2 slots out of 5 to put the ' x 's in.
- There are $\binom{5}{2}=10$ ways of doing this.

You Do This Now

- What is the coefficient of $x^{3} y^{4}$ in $(x+y)^{7}$?

You Do This Now

- What is the coefficient of $x^{3} y^{4}$ in $(x+y)^{7}$?

$$
\frac{7!}{3!\cdot 4!}=\binom{7}{3}
$$

$(x+y)^{n}$

- We now generalize the previous results:
- $(x+y)^{n}=(x+y) \cdot(x+y) \cdot \ldots \cdot(x+y)$

$(x+y)^{n}$

- We now generalize the previous results:
- $(x+y)^{n}=(x+y) \cdot(x+y) \cdot \ldots \cdot(x+y)$
- Co-efficient of $x^{r} y^{n-r}=\#$ of ways to select r ' x^{\prime} 's from n slots $=\binom{n}{r}$

$(x+y)^{n}$

- We now generalize the previous results:
- $(x+y)^{n}=(x+y) \cdot(x+y) \cdot \ldots \cdot(x+y)$
- Co-efficient of $x^{r} y^{n-r}=\#$ of ways to select r ' x^{\prime} 's from n slots $=\binom{n}{r}$
- Binomial Theorem:

$$
(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{r} y^{n-r}
$$

How to find the coefficients $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$

- Approach \#1: Compute directly via formula $\binom{n}{r}=\frac{n!}{r!(n-r)!}$

How to find the coefficients $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$

- Approach \#1: Compute directly via formula $\binom{n}{r}=\frac{n!}{r!(n-r)!}$
- Problem: Large intermediary numbers, even if n, r and $\binom{n}{r}$ are relatively small!
- Example: $\binom{20}{10}=\frac{20!}{10!\cdot 10!}=\frac{1 \times 2 \times \cdots \times 10 \times 11 \times 12 \times \cdots \times 20}{(1 \times 2 \times \cdots \times 10) \cdot(1 \times 2 \times \cdots \times 10)}$

How to find the coefficients $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$

- Approach \#1: Compute directly via formula $\binom{n}{r}=\frac{n!}{r!(n-r)!}$
- Problem: Large intermediary numbers, even if n, r and $\binom{n}{r}$ are relatively small!
- Example: $\binom{20}{10}=\frac{20!}{10!\cdot 10!}=\frac{(1 \times 2 \times \cdots \times 10) \times 11 \times 12 \times \cdots \times 20}{(1 \times 2 \times \cdots \times 10) \cdot(1 \times 2 \times \cdots \times 10)}=18475 \overleftarrow{6}$
- Is our computer smart enough to cancel out the stuff in green?
- Not every computer is!

How to Find the Coefficients $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$

- Approach \#1: Compute directly via formula $\binom{n}{r}=\frac{n!}{r!(n-r)!}$
- Problem: Large intermediary numbers, even if n, r and $\binom{n}{r}$ are relatively small!
- Example: $\binom{20}{10}=\frac{20!}{10!\cdot 10!}=\frac{(1 \times 2 \times \cdots \times 10) \times 11 \times 12 \times \cdots \times 20}{(1 \times 2 \times \cdots \times 10) \cdot(1 \times 2 \times \cdots \times 10)}=18475 \overleftarrow{6}$ large!
- Is our computer smart enough to cancel out the stuff in green?
- Not every computer is!
- But assuming that ours is, we still have to compute $11 \times 12 \times \cdots \times 20$, which is quite large, even though the final result is small!

How to Find the Coefficients $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$

- Approach \#1: Compute directly via formula $\binom{n}{r}=\frac{n!}{r!(n-r)!}$
- Problem: Large intermediary numbers, even if n, r and $\binom{n}{r}$ are relatively small!
- Example: $\binom{20}{10}=\frac{20!}{10!\cdot 10!}=\frac{(1 \times 2 \times \cdots \times 10) \times 11 \times 12 \times \cdots \times 20}{(1 \times 2 \times \cdots \times 10) \cdot(1 \times 2 \times \cdots \times 10)}=184756 \quad \begin{aligned} & \text { Not too } \\ & \text { large! }\end{aligned}$
- Is our computer smart enough to cancel out the stuff in green?
- Not every computer is!
- But assuming that ours is, we still have to compute $11 \times 12 \times \cdots \times 20$, which is quite large.
- Can we do better?

How to Find the Coefficients $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$

- Approach \#1: Compute directly via formula $\binom{n}{r}=\frac{n!}{r!(n-r)!}$
- Problem: Large intermediary numbers, even if n, r and $\binom{n}{r}$ are relatively small!
- Example: $\binom{20}{10}=\frac{20!}{10!\cdot 10!}=\frac{(1 \times 2 \times \cdots \times 10) \times 11 \times 12 \times \cdots \times 20}{(1 \times 2 \times \cdots \times 10) \cdot(1 \times 2 \times \cdots \times 10)}=184756$

- Is our computer smart enough to cancel out the stuff in green?
- Not every computer is!
- But assuming that ours is, we still have to compute $11 \times 12 \times \cdots \times 20$, which is quite large.
- Can we do better?
- Yes, through Pascal's triangle!

Using Pascal's Identity and Triangle to

 Calculate any $\binom{n}{r}$ FastExpanding Binomial Theorem to Trinomial, Quadrinomial,, k-nomial

An Easy Combinatorial Identity

We will prove that

$$
(\forall n, r \in \mathbb{N})\left[(r \leq n) \Rightarrow\binom{n}{r}=\binom{n}{n-r}\right]
$$

in two different ways!

Another Combinatorial Identity

$$
\left(\forall n, r \in \mathbb{N}^{\geq 1}\right)\left[(r \leq n) \Rightarrow\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}\right]
$$

Another Combinatorial Identity

$$
\left(\forall n, r \in \mathbb{N}^{\geq 1}\right)\left[(r \leq n) \Rightarrow\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}\right]
$$

1. Algebraic proof
2. Combinatorial proof!

A Combinatorial Proof of $\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}$

- LHS: \#ways to pick r people from a set of n people.

A Combinatorial Proof of $\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}$

- LHS: \#ways to pick r people from a set of n people.
- RHS: Focus on one person, call him Jason.
- If we pick Jason, then we are left with $n-1$ people to decide if we want to pick or not, from which we now have to pick $r-1$ people (first term of RHS)

A Combinatorial Proof of $\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}$

- LHS: \#ways to pick r people from a set of n people.
- RHS: Focus on one person, call him Jason.
- If we pick Jason, then we are left with $n-1$ people to decide if we want to pick or not, from which we now have to pick $r-1$ people (first term of RHS)
- OR, if we don't pick Jason, we are left with $n-1$ people to decide if we want to pick or not, yet still r people that we need to pick (second term of RHS).
- LHS: \#ways to pick r people from a set of n people.
- RHS: Focus on one person, call him Jason.
- If we pick Jason, then we are left with $n-1$ people to decide if we want to pick or not, from which we now have to pick $r-1$ people (first term OfRHS)
- OR, if we don't pick Jason, we are left with $n-1$ people to decide if we want to pick or not, yet still r people that we need to pick (second term of RHS).

A Combinatorial Proof of $\left.\binom{n}{r}=\left(\binom{n-1}{r-1}\right)+\binom{n-1}{r}\right)$

- LHS: \#ways to pick r people from a set of n people.
- RHS: Focus on one person, call him Jason.
- If we pick Jason, then we are left with $n-1$ people to decide if we want to pick or not, from which we now have to pick $r-1$ people (first term ofRHS)
- OR, if we don't pick Jason, we are left with $n-1$ people to decide if we want to pick or not, yet still r people that we need to pick (second term of RHS).
- This is a combinatorial proof!
- A combinatorial proof is a type of proof where we show two quantities are equal because they solve the same problem.

Pascal's Triangle

Pascal's Triangle

Upshot

- Use combinatorial identity
generate Pascal's triangle
generate binomial coefficients $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$ use in the expansion of $(x+y)^{n}$

Efficiency of Pascal's Triangle

- We avoid the intermediary large numbers problem

Efficiency of Pascal's Triangle

- We avoid the intermediary large numbers problem
- $i^{\text {th }}$ level of triangle gives us all coefficients $\binom{i}{0},\binom{i}{1}, \ldots,\binom{i}{i}$

Efficiency of Pascal's Triangle

- We avoid the intermediary large numbers problem
- $i^{\text {th }}$ level of triangle gives us all coefficients $\binom{i}{0},\binom{i}{1}, \ldots,\binom{i}{i}$
- Compute the value of every node as the sum of its two parents
- Note that the diagonal "edges" of the triangle always 1.

Alternative Explanation for Coeff of $(x+y)^{n}$

- $(x+y)^{n}$ has terms of form $x^{a} y^{b}$.
- As discussed, many simplify

Alternative Explanation for Coeff of $(x+y)^{n}$

- $(x+y)^{n}$ has terms of form $x^{a} y^{b}$.
- As discussed, many simplify
- Treat $x^{a} y^{b}$ as a string for a minute.
- How many permutations of $x^{a} y^{b}$ are there?

$$
\frac{(a+b)!}{a!\cdot b!}
$$

Alternative Explanation for Coeff of $(x+y)^{n}$

- $(x+y)^{n}$ has terms of form $x^{a} y^{b}$.
- As discussed, many simplify
- Treat $x^{a} y^{b}$ as a string for a minute.
- How many permutations of $x^{a} y^{b}$ are there?

$$
\frac{(a+b)!}{a!\cdot b!}=\frac{n!}{a!\cdot(n-a)!}
$$

Alternative Explanation for Coeff of $(x+y)^{n}$

- $(x+y)^{n}$ has terms of form $x^{a} y^{b}$.
- As discussed, many simplify
- Treat $x^{a} y^{b}$ as a string for a minute.
- How many permutations of $x^{a} y^{b}$ are there?

$$
\frac{(a+b)!}{a!\cdot b!}=\frac{n!}{a!\cdot(n-a)!}=\binom{n}{a}
$$

An Exercise For You To Do Now

- Expand $(x+y+z)^{2}$

An Exercise For You To Do Now

- Expand $(x+y+z)^{2}$

$$
x^{2}+y^{2}+z^{2}+2 x y+2 x z+2 y z
$$

Trinomial Theorem

$$
\cdot(x+y+z)^{5}=(x+y+z) \cdot(x+y+z) \cdot(x+y+z) .
$$

Trinomial Theorem

- $(x+y+z)^{5}=(x+y+z) \cdot(x+y+z) \cdot(x+y+z)$.

$$
(x+y+z) \cdot(x+y+z)
$$

- The expansion will have terms of form

$$
x^{a} y^{b} z^{c}, \text { where } a+b+c=5
$$

Trinomial Theorem

- $(x+y+z)^{5}=(x+y+z) \cdot(x+y+z) \cdot(x+y+z)$.

$$
(x+y+z) \cdot(x+y+z)
$$

- The expansion will have terms of form

$$
x^{a} y^{b} z^{c}, \text { where } a+b+c=5
$$

- What should the coefficients be?

Trinomial Theorem

$$
x^{a} y^{b} z^{c}, \text { where } a+b+c=5
$$

- Once again, let's view $x^{a} y^{b} z^{c}$ as a string.

Trinomial Theorem

$$
x^{a} y^{b} z^{c}, \text { where } a+b+c=5
$$

- Once again, let's view $x^{a} y^{b} z^{c}$ as a string.
- \#permutations of this string =

$$
\frac{(a+b+c)!}{a!\cdot b!\cdot c!}
$$

Trinomial Theorem

$$
x^{a} y^{b} z^{c}, \text { where } a+b+c=5
$$

- Once again, let's view $x^{a} y^{b} z^{c}$ as a string.
- \#permutations of this string =

$$
\frac{(a+b+c)!}{a!\cdot b!\cdot c!}=\frac{5!}{a!\cdot b!\cdot c!}
$$

Trinomial Theorem

$$
(x+y+z)^{n}=\sum_{\substack{a+b+c=n \\ 0 \leq a, b, c \leq n}} \frac{n!}{a!b!c!} x^{a} y^{b} z^{c}
$$

k-nomial Theorem

$$
\left(x_{1}+x_{2}+\cdots+x_{k}\right)^{n}=\sum_{\substack{a_{1}+a_{2}+\cdots+a_{k}=n \\ 0 \leq a_{1}, a_{2}, \ldots, a_{k} \leq n}} \frac{n!}{a_{1}!a_{2}!\ldots a_{k}!} x_{1}^{a_{1}} x_{2}^{a_{2} \ldots} x_{k}^{a}
$$

k-nomial Theorem

$$
\begin{aligned}
\left(x_{1}+x_{2}+\cdots+x_{k}\right)^{n} & =\sum_{\substack{a_{1}+a_{2}+\cdots+a_{k}=n \\
0 \leq a_{1}, a_{2}, \ldots, a_{k} \leq n}} \frac{n!}{a_{1}!a_{2}!\ldots a_{k}!} x_{1}^{a_{1}} x_{2}^{a_{2} \ldots} x_{k}^{a} a_{k} \\
& \Leftrightarrow\left(\sum_{i=1}^{k} x_{i}\right)^{n}=\sum_{\substack{a_{1}+a_{2}+\cdots+a_{k}=n \\
0 \leq a_{1}, a_{2}, \ldots, a_{k} \leq n}} \frac{n!}{\prod_{i=1}^{k} a_{i}!} \prod_{i=1}^{k} x_{i}^{a_{i}}
\end{aligned}
$$

STOP

RECORDING

