BILL AND EMILY RECORD LECTURE!!!!

Increasing and

 Decreasing Sequences
If you have a Sequence of Length $m \ldots$

Def If $a_{1}, a_{2}, \ldots, a_{m}$ is a sequence of distinct reals then a subsequence is a subset of the sequence in the order given.

If you have a Sequence of Length $m \ldots$

Def If $a_{1}, a_{2}, \ldots, a_{m}$ is a sequence of distinct reals then a subsequence is a subset of the sequence in the order given.
Def If $a_{1}, a_{2}, \ldots, a_{m}$ is a sequence of distinct reals then an increasing subsequence is a subset of the sequence in the order given that is increasing. Same for decreasing subsequence.

If you have a Sequence of Length $m \ldots$

Def If $a_{1}, a_{2}, \ldots, a_{m}$ is a sequence of distinct reals then a subsequence is a subset of the sequence in the order given.
Def If $a_{1}, a_{2}, \ldots, a_{m}$ is a sequence of distinct reals then an increasing subsequence is a subset of the sequence in the order given that is increasing. Same for decreasing subsequence.

Example 1, 3, 10, 8, 20, 5, 2
Increasing Subsequence: $1,3,10,20$.
Decreasing Subsequence: 10,8,5,2.

If you have a Sequence of Length $m \ldots$

Def If $a_{1}, a_{2}, \ldots, a_{m}$ is a sequence of distinct reals then a subsequence is a subset of the sequence in the order given.
Def If $a_{1}, a_{2}, \ldots, a_{m}$ is a sequence of distinct reals then an increasing subsequence is a subset of the sequence in the order given that is increasing. Same for decreasing subsequence.

Example 1, 3, 10, 8, 20, 5, 2
Increasing Subsequence: $1,3,10,20$.
Decreasing Subsequence: 10,8,5,2.
A sequence has the $I D(k)$ (Increasing-Decreasing) property if there is either an increasing subsequence of length k OR a decreasing subsequence of length k.

Work on In Groups

- Find as long a sequence as you can where ID(2) does NOT hold.

Work on In Groups

- Find as long a sequence as you can where $I D(2)$ does NOT hold.
Prove that you cannot find a longer one.

Work on In Groups

- Find as long a sequence as you can where $I D(2)$ does NOT hold.
Prove that you cannot find a longer one.
Let X_{2} be smallest number such that EVERY sequence of length X_{2} has $I D(2)$.

Work on In Groups

- Find as long a sequence as you can where $I D(2)$ does NOT hold.
Prove that you cannot find a longer one.
Let X_{2} be smallest number such that EVERY sequence of length X_{2} has $I D(2)$.
- Find as long a sequence as you can where ID(3) does NOT hold.

Work on In Groups

- Find as long a sequence as you can where $I D(2)$ does NOT hold.
Prove that you cannot find a longer one.
Let X_{2} be smallest number such that
EVERY sequence of length X_{2} has $I D(2)$.
- Find as long a sequence as you can where ID(3) does NOT hold.
Prove that you cannot find a longer one.
Let X_{3} be smallest number such that
EVERY sequence of length X_{3} has $I D(3)$.
- Try to find pattern!

Answers: $k=2$ Case is Easy

The sequence

1

does not satisfy $I D(2)$.

Answers: $k=2$ Case is Easy

The sequence

$$
1
$$

does not satisfy $I D(2)$.
ANY sequence of length 2 DOES satisfy $I D(2)$.
$X_{2}=2$.

Answers: $k=3$ Case

The sequence

$$
3,6,1,4
$$

does not satisfy $I D(3)$.

Answers: $k=3$ Case

The sequence

$$
3,6,1,4
$$

does not satisfy $I D(3)$. T or F: Every seq of length 5 have $I D(3)$.

Answers: $k=3$ Case

The sequence

$$
3,6,1,4
$$

does not satisfy $I D(3)$.
T or F: Every seq of length 5 have $I D(3)$.
Does every sequence of length 5 satisfy ID(3)?

Answers: $k=3$ Case

The sequence

$$
3,6,1,4
$$

does not satisfy $I D(3)$.
T or F: Every seq of length 5 have $I D(3)$.
Does every sequence of length 5 satisfy ID(3)?
Yes. Can prove by messy cases OR see next slide for proof by Pigeonhole Principle.

Answers: $k=3$ Case by P. Principle

Answers: $k=3$ Case by P. Principle

Look at 3, 5, 1, 4, 2.

Answers: $k=3$ Case by P. Principle

Look at 3, 5, 1, 4, 2.
IF subseq stopped at the FIRST element there would be

- An INC subseq of length 1 . Let $u_{1}=1$.
- A DEC subseq of length 1 . Let $d_{1}=1$.

Answers: $k=3$ Case by P. Principle

Look at 3, 5, 1, 4, 2.
IF subseq stopped at the FIRST element there would be

- An INC subseq of length 1 . Let $u_{1}=1$.
- A DEC subseq of length 1 . Let $d_{1}=1$.

IF subseq stopped at the SECOND element there would be

- An INC subseq of length 2. Let $u_{2}=2$.
- A DEC subseq of length 1 . Let $d_{2}=1$.

Answers: $k=3$ Case by P. Principle

Look at 3, 5, 1, 4, 2.
IF subseq stopped at the FIRST element there would be

- An INC subseq of length 1 . Let $u_{1}=1$.
- A DEC subseq of length 1 . Let $d_{1}=1$.

IF subseq stopped at the SECOND element there would be

- An INC subseq of length 2. Let $u_{2}=2$.
- A DEC subseq of length 1 . Let $d_{2}=1$.

IF subseq stopped at the THIRD element there would be

- An INC subseq of length 2. Let $u_{3}=1$.
- A DEC subseq of length 2 . Let $d_{3}=2$.

Answers: $k=3$ Case by P. Principle

Look at 3, 5, 1, 4, 2.
IF subseq stopped at the FIRST element there would be

- An INC subseq of length 1 . Let $u_{1}=1$.
- A DEC subseq of length 1 . Let $d_{1}=1$.

IF subseq stopped at the SECOND element there would be

- An INC subseq of length 2. Let $u_{2}=2$.
- A DEC subseq of length 1 . Let $d_{2}=1$.

IF subseq stopped at the THIRD element there would be

- An INC subseq of length 2. Let $u_{3}=1$.
- A DEC subseq of length 2. Let $d_{3}=2$.

IF subseq stopped at the FOURTH element there would be

- An INC subseq of length 2. Let $u_{4}=2$.
- A DEC subseq of length 2. Let $d_{4}=2$.

Answers: $k=3$ Case by P. Principle

Look at 3, 5, 1, 4, 2.
IF subseq stopped at the FIRST element there would be

- An INC subseq of length 1 . Let $u_{1}=1$.
- A DEC subseq of length 1 . Let $d_{1}=1$.

IF subseq stopped at the SECOND element there would be

- An INC subseq of length 2 . Let $u_{2}=2$.
- A DEC subseq of length 1 . Let $d_{2}=1$.

IF subseq stopped at the THIRD element there would be

- An INC subseq of length 2 . Let $u_{3}=1$.
- A DEC subseq of length 2. Let $d_{3}=2$.

IF subseq stopped at the FOURTH element there would be

- An INC subseq of length 2. Let $u_{4}=2$.
- A DEC subseq of length 2. Let $d_{4}=2$.

IF subseq stopped at the FIFTH element there would be

- An INC subseq of length 2 . Let $u_{5}=2$.
- A DEC subseq of length 2 . Let $d_{5}=3$.

Answers: $k=3$ Case by P. Principle

- Let u_{i} be length of longest INC subseq that ends at a_{i}.
- Let d_{i} be length of longest DEC subseq that ends at a_{i}.

Lemma If $i<j$ then $\left(u_{i}, d_{i}\right) \neq\left(u_{j}, d_{j}\right)$. Pf
If $a_{i}<a_{j}$ then u_{i} goes up by at least 1 .
If $a_{i}>a_{j}$ then e_{i} goes up by at least 1 .
End of Proof

Answers: $k=3$ Case by P. Principle

- Let u_{i} be length of longest INC subseq that ends at a_{i}.
- Let d_{i} be length of longest DEC subseq that ends at a_{i}.

Lemma If $i<j$ then $\left(u_{i}, d_{i}\right) \neq\left(u_{j}, d_{j}\right)$.
Pf
If $a_{i}<a_{j}$ then u_{i} goes up by at least 1 .
If $a_{i}>a_{j}$ then e_{i} goes up by at least 1 .
End of Proof
Thm $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ has $I D(3)$.
Pf Assume not. Then when map i to $\left(u_{i}, d_{i}\right) 1 \leq u_{i}, d_{i} \leq 2$.

Answers: $k=3$ Case by P. Principle

- Let u_{i} be length of longest INC subseq that ends at a_{i}.
- Let d_{i} be length of longest DEC subseq that ends at a_{i}.

Lemma If $i<j$ then $\left(u_{i}, d_{i}\right) \neq\left(u_{j}, d_{j}\right)$.
Pf
If $a_{i}<a_{j}$ then u_{i} goes up by at least 1 .
If $a_{i}>a_{j}$ then e_{i} goes up by at least 1 .
End of Proof
Thm $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ has $I D(3)$.
Pf Assume not. Then when map i to $\left(u_{i}, d_{i}\right) 1 \leq u_{i}, d_{i} \leq 2$.
So have map from $\{1,2,3,4,5\}$ to $\{1,2\} \times\{1,2\}$.

Answers: $k=3$ Case by P. Principle

- Let u_{i} be length of longest INC subseq that ends at a_{i}.
- Let d_{i} be length of longest DEC subseq that ends at a_{i}.

Lemma If $i<j$ then $\left(u_{i}, d_{i}\right) \neq\left(u_{j}, d_{j}\right)$.
Pf
If $a_{i}<a_{j}$ then u_{i} goes up by at least 1 .
If $a_{i}>a_{j}$ then e_{i} goes up by at least 1 .
End of Proof
Thm $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ has $I D(3)$.
Pf Assume not. Then when map i to $\left(u_{i}, d_{i}\right) 1 \leq u_{i}, d_{i} \leq 2$.
So have map from $\{1,2,3,4,5\}$ to $\{1,2\} \times\{1,2\}$.
FIVE elements map into FOUR elements, so by P. Princ, some elements is mapped to twice.

Answers: $k=3$ Case by P. Principle

- Let u_{i} be length of longest INC subseq that ends at a_{i}.
- Let d_{i} be length of longest DEC subseq that ends at a_{i}.

Lemma If $i<j$ then $\left(u_{i}, d_{i}\right) \neq\left(u_{j}, d_{j}\right)$.
Pf
If $a_{i}<a_{j}$ then u_{i} goes up by at least 1 .
If $a_{i}>a_{j}$ then e_{i} goes up by at least 1 .
End of Proof
Thm $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ has $I D(3)$.
Pf Assume not. Then when map i to $\left(u_{i}, d_{i}\right) 1 \leq u_{i}, d_{i} \leq 2$.
So have map from $\{1,2,3,4,5\}$ to $\{1,2\} \times\{1,2\}$.
FIVE elements map into FOUR elements, so by P. Princ, some elements is mapped to twice.
CANNOT happen by Lemma.

Generalize This Theorem

Prove in groups
Thm Let $k \geq 3$. Let $n=X X X(k)$. Any sequence of distinct numbers of length n has $I D(k)$.

Generalize This Theorem

Prove in groups
Thm Let $k \geq 3$. Let $n=X X X(k)$. Any sequence of distinct numbers of length n has $I D(k)$.
$\operatorname{Pf} X X X(k)=(k-1)^{2}+1$.
Assume not. Then when map i to $\left(u_{i}, d_{i}\right) 1 \leq u_{i}, d_{i} \leq k-1$.

Generalize This Theorem

Prove in groups
Thm Let $k \geq 3$. Let $n=X X X(k)$. Any sequence of distinct numbers of length n has $I D(k)$.
$\operatorname{Pf} X X X(k)=(k-1)^{2}+1$.
Assume not. Then when map i to $\left(u_{i}, d_{i}\right) 1 \leq u_{i}, d_{i} \leq k-1$.
So have map from $\left\{1, \ldots,(k-1)^{2}+1,\right\}$ to
$\{1, \ldots, k-1\} \times\{1, \ldots, k-1\}$.

Generalize This Theorem

Prove in groups
Thm Let $k \geq 3$. Let $n=X X X(k)$. Any sequence of distinct numbers of length n has $I D(k)$.
$\operatorname{Pf} X X X(k)=(k-1)^{2}+1$.
Assume not. Then when map i to $\left(u_{i}, d_{i}\right) 1 \leq u_{i}, d_{i} \leq k-1$.
So have map from $\left\{1, \ldots,(k-1)^{2}+1,\right\}$ to
$\{1, \ldots, k-1\} \times\{1, \ldots, k-1\}$.
$(k-1)^{2}+1$ elements map into $(k-1)^{2}$ elements, so by P. Princ, some elements is mapped to twice.

Generalize This Theorem

Prove in groups
Thm Let $k \geq 3$. Let $n=X X X(k)$. Any sequence of distinct numbers of length n has $I D(k)$.
$\operatorname{Pf} X X X(k)=(k-1)^{2}+1$.
Assume not. Then when map i to $\left(u_{i}, d_{i}\right) 1 \leq u_{i}, d_{i} \leq k-1$.
So have map from $\left\{1, \ldots,(k-1)^{2}+1,\right\}$ to
$\{1, \ldots, k-1\} \times\{1, \ldots, k-1\}$.
$(k-1)^{2}+1$ elements map into $(k-1)^{2}$ elements, so by P. Princ, some elements is mapped to twice. CANNOT happen by Lemma.

Is $(k-1)^{2}+1$ tight?

Work on in groups.

Is $(k-1)^{2}+1$ tight?

Work on in groups.
YES. there IS a sequence of length $(k-1)^{2}$ where NOT $I D(k)$. EXAMPLE
$k=4$
$4,3,2,1 \quad 8,7,6,5 \quad 12,11,10,9 \quad 15,14,13,12$.

Generalized Pigeonhole Principle

I want Three Balls in the Same Box!

If there are 101 balls going into 100 boxes what do we know?

I want Three Balls in the Same Box!

If there are 101 balls going into 100 boxes what do we know? some box gets ≥ 2 balls.

I want Three Balls in the Same Box!

If there are 101 balls going into 100 boxes what do we know? some box gets ≥ 2 balls.

If there are 102 balls going into 100 boxes what do we know?

I want Three Balls in the Same Box!

If there are 101 balls going into 100 boxes what do we know? some box gets ≥ 2 balls.

If there are 102 balls going into 100 boxes what do we know? still: some box gets ≥ 2 balls.

I want Three Balls in the Same Box!

If there are 101 balls going into 100 boxes what do we know? some box gets ≥ 2 balls.

If there are 102 balls going into 100 boxes what do we know? still: some box gets ≥ 2 balls.

How many balls do you need before you are guaranteed ≥ 3 balls in a box?

I want Three Balls in the Same Box!

If there are 101 balls going into 100 boxes what do we know? some box gets ≥ 2 balls.

If there are 102 balls going into 100 boxes what do we know? still: some box gets ≥ 2 balls.

How many balls do you need before you are guaranteed ≥ 3 balls in a box?
If there are 200 balls going into 100 boxes what do we know?

I want Three Balls in the Same Box!

If there are 101 balls going into 100 boxes what do we know? some box gets ≥ 2 balls.

If there are 102 balls going into 100 boxes what do we know? still: some box gets ≥ 2 balls.

How many balls do you need before you are guaranteed ≥ 3 balls in a box?
If there are 200 balls going into 100 boxes what do we know? still: some box gets ≥ 2 balls.

I want Three Balls in the Same Box!

If there are 101 balls going into 100 boxes what do we know? some box gets ≥ 2 balls.

If there are 102 balls going into 100 boxes what do we know? still: some box gets ≥ 2 balls.

How many balls do you need before you are guaranteed ≥ 3 balls in a box?
If there are 200 balls going into 100 boxes what do we know? still:
some box gets ≥ 2 balls.
If there are 201 balls going into 100 boxes what do we know?

I want Three Balls in the Same Box!

If there are 101 balls going into 100 boxes what do we know? some box gets ≥ 2 balls.

If there are 102 balls going into 100 boxes what do we know? still: some box gets ≥ 2 balls.

How many balls do you need before you are guaranteed ≥ 3 balls in a box?
If there are 200 balls going into 100 boxes what do we know? still:
some box gets ≥ 2 balls.
If there are 201 balls going into 100 boxes what do we know?
AH-HA: some box gets ≥ 3 balls.

General Case

If you have m balls in n boxes then some box has at least $X X X(n, m)$ balls.
Find $X X X(n, m)$ in groups.

General Case

If you have m balls in n boxes then some box has at least $X X X(n, m)$ balls.
Find $X X X(n, m)$ in groups.
$\left\lceil\frac{m}{n}\right\rceil$.

General Case

If you have m balls in n boxes then some box has at least $X X X(n, m)$ balls.
Find $X X X(n, m)$ in groups.
$\left\lceil\frac{m}{n}\right\rceil$.
Lets try this out:
101 ball in 100 boxes: $\lceil 101\rceil 100=2$.

General Case

If you have m balls in n boxes then some box has at least $X X X(n, m)$ balls.
Find $X X X(n, m)$ in groups.
$\left\lceil\frac{m}{n}\right\rceil$.
Lets try this out:
101 ball in 100 boxes: $\lceil 101\rceil 100=2$.
200 ball in 100 boxes: 「200 $100=2$.

General Case

If you have m balls in n boxes then some box has at least $X X X(n, m)$ balls.
Find $X X X(n, m)$ in groups.
$\left\lceil\frac{m}{n}\right\rceil$.
Lets try this out:
101 ball in 100 boxes: $\lceil 101\rceil 100=2$.
200 ball in 100 boxes: 「200 $100=2$.
201 ball in 100 boxes: $\lceil 201\rceil 100=3$.

Application to Geometry

1. If there are 5 points in the unit square there must be 2 that are XXX apart?
2. If there are 6 points in the unit square there must be 2 that are XXX apart?
3.

Work on in groups.

Application to Geometry

1. If there are 5 points in the unit square there must be 2 that are XXX apart?
2. If there are 6 points in the unit square there must be 2 that are XXX apart?
3.

Work on in groups.
5 points: Divide the square into 4 squares (whiteboard). Two of the points must be in the same small square, which has diagonal $\frac{\sqrt{2}}{2}$.

Application to Geometry

1. If there are 5 points in the unit square there must be 2 that are XXX apart?
2. If there are 6 points in the unit square there must be 2 that are XXX apart?
3.

Work on in groups.
5 points: Divide the square into 4 squares (whiteboard). Two of the points must be in the same small square, which has diagonal $\frac{\sqrt{2}}{2}$.

For which n will we get 5 in the same small square?
We are putting n points into 4 boxes and want some box to have 5 .
Want $\left\lceil\frac{m}{4}\right\rceil=5$. Take $m=17$.
Then have 5 points in $\frac{1}{2} \times \frac{1}{2}$ FINISH AT WHITEBOARD

