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Abstract

Ramsey theory is a branch of mathematics that focuses on the appearance of order in a
substructure given a structure of a specific size. This paper will explore some basic definitions
of and history behind Ramsey theory, but will focus on a subsection of Ramsey theory
known as Ramsey numbers. A discussion of what Ramsey numbers are, some examples of
their relevance in real-life scenarios, and a computational method for determining Ramsey
numbers will be provided in an attempt to create an accessible, easy to understand look at
an interesting topic.
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1 Introduction

When beginning research for this topic, I came to an important realization that has shaped
the writing of this paper. This thought is that my work does not have a strong likelihood
of producing some new development in the field of Ramsey theory and more likely serves
as an overview of work done in the past. As such, the contents of this paper will instead
aim to create a discussion of Ramsey theory that is accessible to individuals with different
backgrounds in mathematics. Whether through the use of visuals, aggregation of proofs and
examples that I believe to be understandable or relatable, or the creation of a very general
computational method for Ramsey numbers, my goal is to provide something that others
can utilize as a introductory step to something more. Ramsey theory and Ramsey numbers
will require new mathematicians or new ways of looking at things in order to make new
discoveries, and sometimes the most important first step is a clear understanding of the
basics.

1.1 Ramsey Theory

All of the work in this paper falls under a category of mathematics known as Ramsey
theory. There are two general definitions of Ramsey theory that provide a good context
into what will be discussed later in this paper. A broader understanding is summarized by
the idea that “Ramsey Theory deals with finding order amongst apparent chaos,” [4] while
an explanation that is more apt for the focus of this paper is that Ramsey theory is based
around the idea that “any structure will necessarily contain an orderly substructure.” [8] The
former quotation appeals to the essence of Ramsey theory in that it is a field of mathematics
emphasizing the appearance of order in things such as sequences, groups, or graphs. The
latter is more suited to the majority of what this paper chooses to focus on, namely graphs
of a certain order guaranteeing subgraphs of another order.

1.2 Useful Definitions

Given that graph theory representations of Ramsey theory is going to be the most preva-
lent aspect of this paper, we will go over some basic definitions of some frequently used
terms. Additionally, a brief explanation of the relevance of definitions will accompany each
definition.

Definition 1.1. A graph G = (V,E) is a set of vertices and edges, where V (G) and E(G)
are the sets of vertices and edges in G, respectively.

Because a lot of Ramsey theory utilizes graph theory, it’s important to establish a def-
inition of a graph. Ramsey theory can also be applied to constructs such as groups or
sequences, but nearly all of the focus in this paper will be on graph theory applications of
Ramsey theory.

Definition 1.2. A complete graph on n vertices, denoted Kn, is a graph in which every
vertex is adjacent, or connected by an edge, to every other vertex in G.
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Complete graphs are a specific type of graph that are utilized in aspects of Ramsey
theory, namely in discussions of Ramsey’s Theorem and Ramsey numbers, both of which we
will discuss later in more detail. Complete graphs have known properties that are useful for
analyzing problems regarding these aspects of Ramsey theory. For example, Kn will have

n−1∑
i=0

i =
n(n− 1)

2

edges, which are analyzed to determine Ramsey numbers. This can make the identification
of Ramsey numbers extremely difficult, as the number of complete graphs to be analyzed
can increase significantly with a small increase in n.

Definition 1.3. A clique is a subset of vertices such that there exists an edge between
any pair of vertices in that subset of vertices. This is equivalent to having a complete sub-
graph.[10].

Definition 1.4. An independent set of a graph is a subset of vertices such that there
exists no edges between any pair of vertices in that subset [10].

Cliques and independent sets are important for a certain method of defining Ramsey’s
Theory and Ramsey numbers. A large number of mathematicians choose to analyze graphs
in this context; however this paper will explore the method of analysis that relies solely on
complete graphs and edge colorings (see the following definition).

Definition 1.5. Let C be a set of colors {c1, c2, ..., cm} and E(G) be the edges of a graph
G. An edge coloring f : E → C assigns each edge in E(G) to a color in C. If an edge
coloring uses k colors on a graph, then it is known as a k-colored graph.

It’s worth noting that the most common use of the term “coloring” refers to coloring
of vertices and in a similar fashion a k-colored graph is often thought of in terms of the
number of colors assigned to the vertices in a given graph. However, for the purposes of this
paper, every time the terms “colored” or k-colored graph are used they are being used in
the context of edge colorings. This is because Ramsey theory often considers structures in
terms of edges (hence the references to cliques and independent sets) as opposed to vertices.

Finally, there will be additional definitions presented in the appropriate sections, but for
now we have the fundamental building blocks that can be used to explain the majority of
content in this paper.

2 History of Ramsey Theory

Now that we are armed with at least a tentative understanding of what Ramsey theory is and
have been provided with some basic definitions, it’s time to work talk about some specific
work in Ramsey theory. To start, we’ll delve into a discussion of some of the key figures in
early Ramsey theory and their work.
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2.1 Van der Waerden’s Theorem

One of the first mathematical theorems classified as part of Ramsey theory was produced
by Dutch mathematician Bartel Leendert van der Waerden, who in 1927 published a paper
that established the following theorem.

Theorem 2.1 (Van der Waerden’s Theorem). For any p, s ∈ N, there is an N ∈ N such
that for any partition of the set {1, 2, ..., N} into p sets there will be an arithmetic sequence
of s terms. [7].

While this theorem will be offered without proof, it’s worth taking some time to run
through an example of what this theorem implies. We note that the van der Waerden
number W (p, s) is the smallest N value satisfying van der Waerden’s Theorem for the given
p, s. With this in mind, we consider the known case W (2, 3) = 9. To to see how this
works, consider the set {1, 2, 3, 4, 5, 6, 7, 8, 9} randomly partitioned it into two sets. Because
W (2, 3) = 9, one of our two subsets will be guaranteed to contain three terms that form an
arithmetic sequence. For example, in the partition

{1, 2, 3, 4, 5, 6, 7, 8, 9} → {1, 3, 4, 6, 9} , {2, 5, 7, 8} ,

the subset {1, 3, 4, 6, 9} contains the arithmetic sequence 3, 6, 9.

2.2 Ramsey’s Theorem

The naming fame of Ramsey theory goes to British mathematician Frank Plumpton Ramsey,
who published a paper in 1928 with proof of what we now call Ramsey’s Theorem and
other work which would be most easily classified as a part of Ramsey theory. Interestingly,
Ramsey was involved in a variety of other disciplines, most notably economics. He worked
with famous economist John Maynard Keynes and produced multiple papers which were still
cited into the 1990s [8]. However, Ramsey sadly died in 1930 at the age of 26 after an illness
and “complications from abdominal surgery.” [8]

The main contribution Ramsey made was Ramsey Theorem, which has a variety of
definitions depending on the context in which the theorem is intended to be used. For our
purposes, we’re going to focus in on a specific version of Ramsey’s Theorem that is based on
coloring a complete graph.

Theorem 2.2 (Ramsey’s Theorem (2-color version)). Let r ∈ N. Then there exists an
n ∈ N such that any 2-colored Kn graph contains a monochromatic (1-colored) subgraph Kr

of Kn.[11]

So in reference to our second definition of Ramsey theory provided in Section 1.1, if there
is an orderly substructure (i.e. a complete monochromatic subgraph Kr) then there must
be some larger 2-colored structure in which that orderly substructure exists (i.e Kn). From
this, we also develop the idea of Ramsey numbers for a 2-colored graph.

Definition 2.1 (Ramsey number (2-color definition)). A Ramsey Number, written as n =
R(r, b), is the smallest integer n such that the 2-colored graph Kn, using the colors red and
blue for edges, implies a red monochromatic subgraph Kr or a blue monochromatic subgraph
Kb. [1]
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There are a couple things to note about this definition. First, there are definitions of
Ramsey theory and Ramsey numbers that address graphs with edge colorings using more
than two colors. However, relations in 2-colored graphs are much easier to analyze and thus
more progress has been made in the study of 2-colored Ramsey numbers than any other.
Secondly, the choice of colors is completely arbitrary, but seems to be a convention in a few
journals so this paper will do the same.

2.3 Contributions of Erdös

The last mathematician we will choose to discuss is the esteemed Hungarian mathematician
Paul Erdös. In 1933, Erdös and George Szekeres were posed the following question by fellow
mathematics student Esther Klein:

“Is it true that for all n, there is a least integer g(n) so that any set of g(n) points in the
plane in general position must alwyas contain the vertices of a convex n-gon?” [2]

This problem is now known as the Happy End Problem, a nod to the fact Szekeres and
Klein ended up getting married after the production of a paper on the question that showed
that 2n−2 + 1 ≤ g(n) ≤

(
2n−4
n−2

)
+ 1. But the most pertinent detail for Ramsey theory was

that the work for this problem caused Erdös to discover Ramsey’s 1928 paper. This in turn
led Erdös to begin working on identifying Ramsey numbers and sparked the beginning of
major interest in Ramsey theory problems.

Erdös is also well-remembered in Ramsey theory for providing the two of the most fre-
quently cited stories about the theory. The first is a canonical example known as the Party
Problem. In this problem, we assume that there are n people at a party where any two
people either know each other or do not know each other. It can be shown that if there
are six people at the party, then there will be a subgroup of at least three people that all
know each other or all do not know each other. This is also another way of stating that
R(3, 3) = 6, something that will be proven explicitly in another section.

The second example is a hypothetical situation which I have dubbed the “alien invasion
problem” due to the context of the situation. The ideas brought forth by the hypothetical
has relevance to the difficulty in determining exact values for Ramsey numbers and will be
discussed in greater detail in Section 4.2.

3 Ramsey Numbers

Of all divisions of Ramsey theory, one of the most researched and well-known is that of
Ramsey numbers. Although previously defined in Section 1.1, it’s worth reestablishing a
formal definition as the following subsections will rely heavily on an understanding of Ramsey
numbers, which are derived from an interpretation of Ramsey’s Theorem provided in Section
2.2.

Definition 3.1 (Ramsey number (2-color definition)). A Ramsey Number, written as n =
R(r, b), is the smallest integer n such that the 2-colored graph Kn, using the colors red and
blue for edges, implies a red monochromatic subgraph Kr or a blue monochromatic subgraph
Kb. [1]
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Once again, we note that the colors red and blue are arbitrary choices for the two different
colors in the 2-colored Kn. Moreover, we specifically refer to this definition of Ramsey
numbers as the “2-colored definition” because there are other ways in which Ramsey numbers
are defined and analyzed. For example, it’s quite common for mathematicians to look at
all graphs on n vertices and look for the existence of cliques or complete sets of specified
orders. These still fit the general intent of Ramsey numbers, as if you consider the existence
of an edge between two vertices as a “red” colored edge and the lack of an edge as a “blue”
colored edge, you notice strong similarities between these two interpretations.

3.1 Important Properties of Ramsey Numbers

Now we can discuss some useful relationships between different Ramsey numbers, known
values and range of values for different Ramsey numbers, then conclude with some proofs
of important Ramsey numbers with known numbers. The first important property is that
Ramsey numbers are symmetric with respect to their r and b values.

Theorem 3.1. For all r, b ∈ N, the relationship R(r, b) = R(b, r) holds.

Proof. This result is a natural consequence of the symmetry of graphs. From the standpoint
of edge colorings, consider that a 2-colored complete graph G will have an inversely 2-colored
complete graph G′, where any red edge in G will be colored blue in G′ and vice versa. We
know that R(r, b) requires that any edge coloration of KR(r,b) will have a red monochromatic
subgraph Kr or a blue monochromatic subgraph Kb - that also means that the inversely 2-
colored graph K ′R(r,b) will have a blue monochromatic subgraph Kr or a red monochromatic
subgraph Kb. Thus, since the inverses of all edge colorings are just all edge colorings, we
have the equivalent conditions for R(b, r).

The next relationship was proved in 1955 by Greenwood and Gleason, which is extremely
useful recursive bound for Ramsey numbers which is used in a few proofs of specific Ramsey
numbers.

Theorem 3.2. For all r, b ∈ N, the inequality R(r, b) ≤ R(r − 1, b) + R(r, b− 1) holds.

Proof. Let G be a 2-colored graph on R(r − 1, b) + R(r, b − 1) edges (see Figure 1a for an
example). Consider vertex v ∈ G. We denote nr as the number of vertices adjacent to v via
a red edge and denote nb as the number of vertices adjacent to v via a blue edge. Moreover,
we let the nr vertices adjacent to v by a red edge form a set Sr (see Figure 1b) and similarly
the nb vertices adjacent to v by a blue edge form the set Sb.

Since v is connected to every other vertex in G, we have

nr + nb + 1 = R(r − 1, b) + R(r, b− 1).

From this we have two cases. If nr < R(r − 1, b), then nb ≥ R(r, b− 1) and we consider
the vertices in Sb. Because nb ≥ R(r, b−1), then in the complete subgraph of G formed from
the vertices of Sb and all edges between them there is a complete monochromatic subgraph
M on r vertices or s − 1 vertices. Additionally, since we established that the vertices in
Sb were all connected to v by a blue edge, we can say that the complete subgraph of G

7



(a) (b) (c)

Figure 1: A visualization of an edge coloring of K18 (a), the vertices in this edge coloring
that would be in the set Sr (b), and the corresponding subgraph of K18 using the vertices
in Sr (c).

formed from the vertices of Sb + v and all edges between them will contain a blue complete
monochromatic subgraph on b vertices. Thus, G has a blue monochromatic subgraph of size
b, and the inequality holds in this case.

In the other case, we have nr ≥ R(r − 1, b) and consider the vertices in Sr. Because
nr ≥ R(r− 1, b), then in the complete subgraph of G formed from the vertices of Sr and all
edges between them (see Figure 1c for a visual) there is a complete monochromatic subgraph
N on r−1 vertices or b vertices. Additionally, since all vertices in Sr are connected to v by a
red edge, we can say that the complete subgraph of G formed from the vertices of Sr +v and
all edges between them will contain a re complete monochromatic graph on r edges. Thus,
G has a red monochromatic subgraph of size r, and the inequality also holds, meaning that
the theorem is valid in all cases.

The value of Theorem 3.2 is its ability to establish a general upper bound for all Ramsey
numbers. While the difference between R(r, b) and R(r, b− 1) +R(r− 1, b) tends to increase
as r and b increase (and therefore lessen the value of this upper limit), it’s an excellent
starting point for setting up the bounds of a given R(r, b).

The last theorem we will spend time discussing is one that sets another upper bound for
R(r, b), but this time in relation to combinations as opposed to other Ramsey numbers.

Theorem 3.3.

R(r, b) ≤
(
r + b− 2

r − 1

)
Proof. We will prove by induction on r, b. First, we establish the following base case r =
b = 2:

R(2, 2) = 2 ≤ 2 =

(
2 + 2− 2

2− 1

)
.

Now assume that the relation holds for all r = x− 1, b = y and r = x, b = y − 1 cases - we
demonstrate that the r = x, b = y case holds using Theorem 3.1 and Pascal’s Rule (which is
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not defined but is a well-known combinatorial relationship):

R(r, b) ≤ R(r − 1, b) + R(r, b− 1)

≤
(

(r − 1) + b− 2

(r − 1)− 1

)
+

(
r + (b− 1)− 2

r − 1

)
=

(
r + b− 2

r − 1

)
R(r, b) ≤

(
r + b− 2

r − 1

)
.

3.2 Values for Ramsey Numbers

Since most of the talk about Ramsey numbers has been in relation to the general case
R(r, b), let’s jump into some actual values for Ramsey numbers. First, it’s important to note
that there is a distinction between a “known” Ramsey number and a Ramsey number for
which only upper or lower bounds are known. Stanislaw P. Radziszowski, a Polish-American
mathematician who has worked extensively with Ramsey theory from the late half of the
20th century up to the present, has assembled an excellent table of Ramsey numbers and
citations for either proofs establishing known values or upper or lower bounds for different
Ramsey numbers [14]. From his work, I have compiled a table for Ramsey numbers R(r, b)
with r, b ≤ 10 (see Figure 2 on the next page).

A couple things from this table stand out. First, as noted in Theorem 3.1, the values
are symmetric along the main diagonal because R(r, b) = R(b, r). Second, while values are
well established for Ramsey numbers where r or b is small, most values are unknown. A
primary reason for this is that the number of graphs that need to be assessed increases
significantly with just a small increase in either r or b. Ramsey numbers are generally found
by establishing that all 2-colored complete graph of the given size satisfy the conditions of
R(r, b) and then demonstrating that there is some 2-colored complete graph of size R(r, b)−1
that does not satisfy the conditions. However, with increased size for the complete graphs
that need to be checked, both the number of different colorings and the difficulty of assessing
a given graph for a required monochromatic subgraph increases. Thus, all Ramsey numbers
with r, b ≥ 5 have yet to be determined.

Finally, the last thing worth noting about Ramsey numbers is the importance of Ramsey
numbers of the form R(k, k). Sometimes referred to as “main diagonal” Ramsey numbers
due to their position in a table of Ramsey numbers, these specific numbers are well-known for
a few reasons. The simplest is that they are one of the most well-researched and frequently
mentioned. Starting with the canonical example of the Party Problem following up with
studies of infinite limits of the bounds for R(k, k), these are a specific classification of Ramsey
numbers that have been fairly well-researched. A likely reason for this is the symmetry of
the problem (requiring a complete monochromatic subgraph of the same order no matter
which of the two colors the monochromatic subgraph is).
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Figure 2: The Ramsey numbers R(r, b) for r, b ≤ 10. Two-number cells represent undiscov-
ered numbers, with the top number being the upper bound and the bottom number being
the lower bound.[9][14]

3.3 Proofs of Known Ramsey Numbers

With a brief glimpse into what Ramsey numbers have been established, now it’s time to
actually provide proofs for these values. Obviously we can’t take the time to go over every
single proof of all Ramsey numbers that have been found - so instead we’ll tackle two general
proofs that establish all Ramsey numbers R(r, b) where r ≤ 2 or b ≤ 2, then jump into proofs
of the two other main diagonal Ramsey numbers that have been identified.

3.3.1 R(1, k) = 1

We start with the simplest Ramsey numbers, which you can infer from the table in Figure
2 that

R(1, k) = R(k, 1) = 1.

Although a formal proof won’t be offered, it’s easy to understand why this is from a coloring
standpoint. A monochromatic K1 is simply a single vertex, which requires no edges and
thus either a “red” or “blue” monochromatic K1 will simply require one vertex to satisfy the
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conditions of R(1, k) or R(k, 1). Thus, all Ramsey numbers with r = 1 or b = 1 will only
need a single vertex to guarantee the existance of one of their two required subgraphs.

3.3.2 R(2, k) = k

Taking one step up in complexity, we analyze all Ramsey numbers with r = 2 or b = 2 and
get

R(2, k) = R(k, 2) = k.

Once again, an explanation will be offered instead of a formal proof. Because a K2 subgraph
is simple an edge between two vertices, a monochromatic subgraph of given color will exist
as long as there is a single edge of that given color in the complete graph. Thus, the only
edge coloring in which the conditions for the Ramsey number wouldn’t be satisfied is if every
edge in the graph is the opposite color, or if KR(2,k) is monochromatic of the opposite color.
This becomes an issue when the size of the complete graph is less than k - however, once
R(2, k) or R(k, 2) is equal to k, the entire graph is a monochromatic Kk of the color required
by the conditions. Thus, every single subgraph of Kk will have one of the two required
monochromatic subgraphs.

3.3.3 R(3, 3) = 6

Now that we’ve proved some values for simpler Ramsey numbers, we’ll focus in on known
Ramsey numbers of the form R(k, k). The first Ramsey number of this form to consider is
R(3, 3), the number involved in the Party Problem.

Theorem 3.4.
R(3, 3) = 6

Proof. We will execute this proof by showing that 5 < R(3, 3) ≤ 6. First, we demonstrate
that R(3, 3) 6= 5 by showing the following edge coloring of K5 (see Figure 3 below).

(a) (b) (c)

Figure 3: A K5 graph (a) with no monochromatic K3 subgraph. Visuals of all blue edges
(b) and red edges (c) are provided to help demonstrate this fact.

We note that none of the 10 triangles formed in this configuration are monochromatic
and therefore R(3, 3) must be greater than 5. So we next must consider R(3, 3) = 6. We
observe that for any vertex v in K6, there must be at least three adjacent edges of the same
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color. Without loss of generality, let’s assume that there are three red edges (Figure 4a).
Next, we consider the three vertices adjacent to v via a red edge (Figure 4b). If any edge
between two of these three vertices is colored red, then there is a red monochromatic triangle.
On the other hand, if none of the edges between these three vertices are red, then there are
three blue edges and thus a blue monochromatic triangle (Figure 4c).

(a) (b) (c)

Figure 4: A step-by-step visual process for proving that K6 mst have a monochromatic K3

subgraph

In other words, you are guaranteed to have either a red or blue monochromatic triangle.
This logic also applies to situations where v has four or five edges of a single color, as we
simply look at any three vertices that are adjacent by an edge of that common color and
apply the same logic as above. Thus, R(3, 3) ≤ 6 and R(3, 3) > 5, so R(3, 3) = 6.

3.3.4 R(4, 4) = 18

The value of R(4, 4) was established in 1955 by Greenwood and Gleason [9], who wrote the
proof that will be presented in this section. Their proof relies on two additional pieces of
information, the first being knowledge of the relationship R(r, b) ≤ R(r − 1, b) + R(r, b− 1)
(Theorem 3.2) and the second being the following definition.

Definition 3.2. Let a, x ∈ Zn. Then a is a quadratic residue if there exists an x such
that x2 ≡ a mod n. [12]

This becomes relevant in the second part of the proof, which utilizes some graph theory
and this definition. With this information in mind, we can jump into the proof.

Theorem 3.5. The Ramsey number R(4, 4) is exactly 18. [9]

Proof. We will prove this be showing that 17 < R(4, 4) ≤ 18. To show that R(4, 4) > 17, we
will give an example of a graph without a monochromatic K4 in K17. First, consider a set of
field elements Z17, labeled 0 to 16, which correspond to 17 vertices in a graph G. Let every
edge in G be colored based on vi − vj mod 17, where we color the edge between vertices vi
and vj red if this difference is a quadratic residue in Z17 and blue otherwise.

Next, suppose that we have four vertices that are all connected by edges of the same
color. Without loss of generality, let one be 0 and the others be a, b, c. Since all edges
connecting these are the same color, then a, b, c, a− b, a− c, and b− c are either all quadratic
residues or not.

12



Now, since a is not the 0 element in Z17, and Z17 is a field because 17 is prime, we can
multiply by a−1. If we let B = ba−1 and C = ca−1, then we can make a new set of elements
{1, B, C, 1−B, 1− C,B − C} which all must be non-zero quadratic residues. However, the
quadratic residues of Z17 are 1,2,4,8,9,13,15, and 16, and no selection of values for B and
C can make every element in the set a quadratic residue. Hence, there is a contradiction,
meaning that R(4, 4) 6= 17 (and consequently must be greater than 17).

Finally, we show that R(4, 4) ≤ 18 by noting that R(3, 4) = R(4, 3) = 9 and applying
Theorem 3.2. Thus, 17 < R(4, 4) ≤ 18, meaning it must be equal to 18.

3.4 A Real Example of Ramsey Numbers

To demonstrate that Ramsey theory is not all about purely mathematical constructions, it’s
worth noting a interesting example of Ramsey theory appearing in history. This example
comes from computer scientist William Gasarch, whose interest in Ramsey theory led him
to find interdisciplinary applications of Ramsey theory. It discusses the work of a scholar
of pre-Christian England named Sir Woodsor Kneading, who was studying interactions of
various lords in small regions of England. Kneading noted 42 instances from 600 to 400 BC
where the arrival of a sixth lord into a peaceful region with five lords was followed by the
start of a war within a short period of time, while a unique case where war did not break out
occurred when there was an alliance formed between all six lords in the region [6]. Kneading
writes:

“I noticed that either (1) three, four, or five of them formed an alliance and, thinking
themselves quite powerful, merged armies and attacked the other lords, or (2) there were
three or more of them who were pairwise enemies, and in that case war broke out among
the factions...” [6]

This observation is astounding because it is very reminiscent of the fact that R(3, 3) = 6,
in that a group of six lords guaranteed a group of at least three that were all mutual allies
or mutual enemies, and thus caused the region to erupt in war in all but one exceptional
case. The next historical development that Kneading observes is also extremely applicable
to Ramsey theory. He notes that after 400 BC there were “cases of six lords in a region and
no war,” which he argues was due to technological advancements that increased risks with
fighting (this was later confirmed) [6]. But astonishingly, Kneading finds that:

“Between the years of 400 and 200 BC, whenever there were 18 lords in proximity either
(1) between four and seventeen of them formed an alliance and, thinking themselves quite
powerful, merged armies and attacked the other lords, or (2) there were four or more of them
who were pairwise enemies, and in that case war broke out among the factions.” [6]

With the knowledge that R(4, 4) = 18, Kneading’s observation is another example of
a natural development of two Ramsey numbers that followed from logical, historical obser-
vations! While this is not necessarily a proof that the conditions of Ramsey numbers are
guaranteed to hold, it is very inspiring to see this play out in a real situation beyonds the
bounds of mathematics journals.
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4 Bounds for R(k, k)

Now that we’ve spent some time focusing on specific Ramsey numbers, we’re going to jump
out to a little more abstract concept and consider the generalized bounds for Ramsey numbers
of the form R(k, k).

4.1 Initial Bounds

The initial bounds for R(k, k) were first established in a 1947 paper by Erdös, in which it
was proved that

2
k
2 < R(k, k) < 4k. [5]

These bounds are definitely very broad, but the two proofs for the upper and lower bounds
are both interesting and deserve some attention. We’ll start with the lower bound, which is
unique because it utilizes a probablistic method. While Erdös’ proof in the original paper
is understandable, there is an extremely well-explained version from Hung Q. Ngo of SUNY
at Buffalo that we will utilize. First, Ngo provides the following summary of a probabilistic
proof:

“To show that some (combinatorial) object exists, one can envision working on some
probability space in which the object lives in, and show that the probability of such an
existence is strictly positive.” [13]

This definition resonates with Erdös’ proof of the lower bound, which is based on identi-
fying the probability of finding a monochromatic Kk subgraph in a randomly 2-colored Kn

graph, then showing that this probability is strictly less than 1 if n = 2
k
2 . From this, we

know that there is at least some coloring of K
2
k
2

in which there is not a monochromatic Kk,

meaning that R(k, k) > 2
k
2 . Ngo restates and proves this probabilistic proof in the following

manner.

Theorem 4.1. If
(
n
k

)
21−(k

2) < 1, then R(k, k) > n. From this it follows that R(k, k) > 2
k
2

for k ≥ 3. [13]

Proof. First, we define a graph Kn where we randomly color each edge in Kn as red or blue
(i.e. a 0.5 probability of coloring red or a 0.5 probability of coloring blue). We note that if we
randomly choose k vertices in Kn, the probability of these vertices forming a monochromatic

Kk is 21−(k
2). The best way to explain this is by noting that

(
k
2

)
is the number of edges in

Kk, so if it’s monochromatic then the probability is

0.5 ∗ 0.5 ∗ 0.5... ∗ 0.5 = 0.5(k
2) = 2−(k

2),

which when you multiply by 2 possible ways it can be monochromatic (red or blue) provides

21−(k
2).

Next, we note that the total number of Kk graphs in Kn is
(
n
k

)
, as we are simply choosing

k vertices out of the n total in Kn. So the total probability of a monochromatic Kk existing

in Kn is
(
n
k

)
21−(k

2), which means that if this probability is less than 1 then there is some Kn

14



without a monochromatic Kk and thus R(n, n) > n. Using this fact, we aim to show that

R(k, k) > 2
k
2 for n ≥ 3. We note that(

n

k

)
21−(k

2) =
n!

k!(n− k)!
21− k(k−1)

2 <
nk

k!

21+ k
2

2
k2

2

because n!
(n−k)! = n(n−1)(n−2)...(n−k+1) < nk and 21−(k

2) rearranges into 21+
k
2

2
k2
2

. Then, via

the first relationship we proved on the previous page, we want to show that letting n = 2
k
2

for k ≥ 3 will force this probability function to be less than 1. So we have(
2

k
2

k

)
21−(k

2) <
(2

k
2 )k

k!

21+ k
2

2
k2

2

=
2

k2

2

k!

21+ k
2

2
k2

2

=
21+ k

2

k!
< 1

where we conclude the final step that 21+
k
2

k!
< 1 by noting that 21+ k

2 < k! for k ≥ 3. Thus,
there is some 2-coloring of Kn that does not have a monochromatic K

2
k
2

subgraph, meaning

that 2
k
2 < R(k, k).

With the lower bound out of the way, we now can focus our attention on the upper bound,
R(k, k) < 4k. The proof of the upper bound is derived from a more specific inequality that
Erdös found with Szekeres in 1935, which is

R(k, k) ≤
(

2k − 4

k − 2

)
.

Given this information, it’s easy to show that
(
2k−4
k−2

)
< 4k. We simply note that(

2k − 4

k − 2

)
=

(2k − 4)!

((2k − 4)− (k − 2))!(k − 2)!

=

(
(2k − 4)(2k − 6)(2k − 8) · · · (4)(2)

)(
(2k − 5)(2k − 7)(2k − 9) · · · (3)(1)

)
(k − 2)!(k − 2)!

=
2k(k − 2)!

(
(2k − 5)(2k − 7)(2k − 9) · · · (3)(1)

)
(k − 2)!(k − 2)!

=
2k(2k − 5)(2k − 7)(2k − 9) · · · (3)(1)

(k − 2)!

= 2k 2k − 5

k − 2

2k − 7

k − 3

2k − 9

k − 4
· · · 3

2

1

1

< 2k(2k)(
2k − 4

k − 2

)
< 4k

But how do we get to the relationship between R(k, k) and
(
2k−4
k−2

)
? The 1935 paper uses two

methods to demonstrate the inequality R(k, k) ≤
(
2k−4
k−2

)
, but both methods utilize geometric
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analysis as opposed to graph theory and are unsatisfying in terms of length and clarity.
However, there is another method that is much easier to understand, applies to more than
just Ramsey numbers along the main diagonal (a way to refer to Ramsey numbers R(k, k)),
and is also based on theorems we have already discussed and proven. We start with the
general statement of this theorem.

Theorem 4.2. For all Ramsey numbers the relationship R(r, b) ≤
(
r+b−2
r−1

)
holds.

Proof. We will prove by induction. First, we establish the base case r = b = 2:(
2 + 2− 2

2− 1

)
=

(
2

1

)
= 2 ≥ 2 = R(2, 2).

Now assume that the relation holds for all r = x− 1, b = y and r = x, b = y − 1 cases. We
demonstrate that the r = x, b = y case holds as follows, using Theorem 3.2 and Pascal’s
Rule, which states that

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
.

R(r, b) ≤ R(r − 1, b) + R(r, b− 1)

≤
(

(r − 1) + b− 2

(r − 1)− 1

)
+

(
r + (b− 1)− 2

r − 1

)
=

(
r + b− 2

r − 1

)
R(r, b) ≤

(
r + b− 2

r − 1

)
.

We note that for the Ramsey numbers along the main diagonal, r = b, so this can be
rewritten as R(k, k) ≤

(
2k−2
k−1

)
. This is not quite the exact form as R(k, k) ≤

(
2k−4
k−2

)
, but both

upper bounds are equal to some
(
2x
x

)
, which means the bounds will be equivalent if we shift

k up by one when comparing the terms. Thus, in conjunction with the relation
(
2k−4
k−2

)
< 4k,

we have a proof of the inequality for the upper bound of R(k, k).

4.2 Evolution of Bounds

It’s important to note that these bounds have improved overtime. The upper bound for
Ramsey numbers along the main diagonal has improved most signifcantly, with the current
best bound being proved by David Conlon in 2010. Using previous results, he found that
the upper bound can be reduced to

R(k + 1, k + 1) ≤ k−C
log(k)

log(log(k))

(
2k

k

)
with C being some constant [3]. The proof of this is also very long and the result is so specific
that it’s better to refer to his paper as opposed to taking time to restate the proof. This
bound is certainly more complicated than the initial upper bound, and in some cases it is a
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worse estimate of the possible values of certain Ramsey numbers. For example, depending
on the value of C, Conlon’s upper bound for R(5, 5) could be significantly greater than the
initial upper bound of 54 provided by Erdös.

An example that speaks to the difficulty of reducing bounds and identifying Ramsey
numbers is the alien invasion problem introduced by Erdös. The problem is a hypothetical
situation were aliens have visited Earth and have threatened to destroy the planet in six
months if we cannot produce an exact value of R(5, 5) (which, as it stands, is the smallest
Ramsey number of the form R(k, k) without a known value). Erdös asserts that if humanity
was to put all of its computing resources into solving the problem, we would be safe - but
if the aliens had asked for a solution to R(6, 6), we’d be better off trying to fight them [4].
Outside of the interesting premise and value as an icebreaker for presentations on Ramsey
numbers, the example also alludes to the increasing difficulty of determining exact values of
Ramsey numbers R(r, b) even if you only increase r or b by 1.

5 A Computational Method

While most of the information provided in this paper is either a direct reference to work or
proofs done by other mathematicians, there was one specific area in which individual work
is highlighted. That area is my attempts to produce a computational method to improve
bounds on unknown Ramsey numbers. This method required the ability to generate all
2-colored complete graphs of a specified order and analyze each specifically colored graph
for monochromatic subgraphs satisfying the conditions of a given Ramsey number.

There are a couple of caveats to this process. First, this is by no means the only way to go
about the computational process for analyzing conditions for Ramsey numbers. The focus
came about because I did not find satisfactory or even generalized code to identify exact
values for Ramsey numbers during my research. This is troubling, because computational
methods seem to be effective ways to assess complete graphs with many different colorings
and different possibilities for monochromatic subgraphs, which tends to be the case for the
smallest unknown Ramsey numbers such as R(5, 5) or R(3, 10). Secondly, the code that was
produced and will be discussed is by no means efficient. The method I chose is the most
brute force method possible, calculating all possible colorings (even those that are similarly
structured or are known to already contain monochromatic complete subgraphs) and running
iteratively through each complete subgraph of the size analyzed by the Ramsey number (all
possible K5 subgraphs if calculating R(5, 5), for example).

Finally, it’s worth noting that running my computational method for the allotted time
committed to testing did not find any exceptions that would allow us to lower the bounds
on some Ramsey number. This was entirely to be expected, as the chance of a personal
computer running through cases and finding an exception is extremely low. Instead, my
hope is that this code will be a baseline for others to possibly build off of and improve in
order to generate an understandable and efficient computational method for determining
exact values for Ramsey numbers.
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5.1 Representing Colorings of Compelete Graphs

Now let’s take the time to understand the process through which my method operates. The
specific code I used is found in the Appendix, with three different functions being used in
combination to produce the overall method. Given that there may be some readers who have
not learned Python, the programming language in which the code is written, the following
sections will be explained in more general terms.

To start, there needs to be a way to produce all 2-colored graphs of a given order. This
requires the representation of every single edge in the graph, which need to be identified
as either red or blue. This binary requirement led me to consider binary numbers as a
possible conduit for representing all edges in a graph. We can represent any given graph
as an array of binary numbers, with a ‘1’ or a ‘0’ in a specific bit location corresponding
to a specific edge that is colored red or blue, respectively. This ends up requiring a

(
n
2

)
-bit

array for a given Kn in order to account for all
(
n
2

)
edges, which can be a little complicated.

However, an advantage of this method is that we know that there are 2(n
2) possible colorings

of Kn, and moreover we can convert each number from 0 to 2(n
2) − 1 into a unique binary

representation. More specifically, the set of all unique representations will correspond to

every possible sequence of 0s and 1s in a 2(n
2)-bit array, meaning we have accounted for all

possible colorings of Kn (see Figure 5 below for an example). The process for converting
an integer to binary is a simple process and the specific code used can be found in the
“BaseConverter” function listed in the first figure of the appendix.

0 0 0 0 0 1 0 1 0 0 1 1 1 0 0

1 0 1 1 1 0 1 1 1

Figure 5: A graphical representation of every coloring of K3 and the corresponding binary
array representation that would be generated by the developed code (see the appendix for
details). Each bit corresponds to an edge and is either 0 if the edge is colored blue or 1 if
the edge is colored red.

5.2 Producing Adjacency Matrices

While producing a binary representation is useful, it’s not very intuitive or efficient to analyze
these representations. Thus, my work uses adjacency matrices, which are matrices used
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to represent graphs. In an adjacency matrix of a graph G, the element (i, j) normally
corresponds to the number of edges between the vertices vi, vj ∈ G. However, since we are
looking at complete graphs that are 2-colored, we instead represent each element as either
−1, 0 or −1, where -1 represents a blue edge between vi and vj, 1 represents a red edge
between vi and vj, and 0 is reserved for elements (i, i) because there is no edge between
vertex vi and itself. The reason for using -1 and 1 is so we can distinguish between red and
blue monochromatic graphs.

In order to produce these adjacency matrices, the binary array representation of the
graph is transferred to the adjacency matrix by assigning each bit in the array to a location
in the adjacency matrix such that a 1 bit produces a 1 in the assigned matrix location and a
0 bit produces a -1 in the assigned matrix location (see Figure 6 below for an example and
the function “GraphCreator” in the first figure of the appendix for more details).

1

2

3

4

0 0 1 0 1 1


0 1 1 −1
1 0 1 −1
1 1 0 −1
−1 −1 −1 0



Figure 6: Three equivalent representations of a 2-coloring of K4. The graphical representa-
tion corresponds to the bit array by assigning each edge color to a 0 (if blue) or 1 (if red) bit.
The least significant bit corresponds to edge (1,2), the second least significant to (1,3), and
so on until the most significant bit corresponds to the color of (3,4). The adjacency matrix
representation relates to the graph such that each element (i, j) corresponds to the color of
edge (i, j) in the graph, with a -1 if blue and 1 if red.

We note that when assigning a bit array element to an adjacency matrix element (i, j),
we also assign that bit array element to (j, i) (due to symmetry). For this reason, I choose
to go through the bit array element by element and then assigning each element in a way
that prioritizes filling each row in order, then filling in the next row, and on until all rows
are filled. For example, to fill an n × n adjacency matrix, we would assign the first bit to
(1, 2), the second to (1, 3), and so on. Then, when the n − 1st bit is assigned to (1, n), the
nth bit starts filling in the next row at (2, 3), and the n + 1st bit goes to (2, 4) and so on
until the final three bits fill in (n− 1, n− 2), (n, n− 2), and (n− 1, n− 1) respectively (see
Figure 6 above for an example).

5.3 Testing for Monochromatic Subgraphs

One way to test an adjacency matrix for a specific subgraph is by multiplying it by another
adjacency matrix corresponding to the subgraph in question. In this case, the method
represents all edges for a given complete graph of a certain size in a square matrix of order
equal to that of the adjacency matrix for the 2-colored graph. For example, testing for a
K5 subgraph in a K43 graph would result in a 43 × 43 adjacency matrix, but with 1s filled
in for each element corresponding to an edge between vertices in the specific K5 subgraph.
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
0 1 1 −1
1 0 1 −1
1 1 0 −1
−1 −1 −1 0




0 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0

 =


2 1 1 0
1 2 1 0
1 1 2 0
−1 −1 −2 0


Figure 7: An example of testing for a monochromatic subgraph. In this example, an adja-
cency matrix for a 2-colored K4 is matrix-multiplied with an adjacency matrix associated
just with the complete subgraph between vertices 1, 2, 3 ∈ K4. The resulting matrix has 2 in
each element (i, i) (where i ∈ {1, 2, 3}), indicating that this K4 coloring has a monochromatic
K3 between vertices 1, 2, 3.

When the adjacency matrices are multiplied, some important information can be gleaned by
the main diagonal of the resulting matrix. Specifically, the elements (x, x) in the resulting
matrix (where x is the row or column value of a vertex in the complete subgraph Kk under
evaluation) will all be equal to ±(k − 1) if Kk is monochromatic. The reason for this is
because of the way the adjacency matrix was structured (having 1s or -1s for all red or all
blue edges) and the matrix multiplication identifying k−1 edges of the same color adjacent to
each vertex in Kk. See the function “SubgraphFinder” in the second figure of the appendix
for more details.

Thus, with this process, we can test all possible subgraphs to see if there is a monochro-
matic Kk. This method is slow, simply testing every possible combination of vertices for
a monochromatic subgraph of the desired size. If a monochromatic subgraph is found, the
process then moves on to the next 2-colored graph and tests the new adjacency matrix
for a monochromatic subgraph. Eventually, there is either a 2-colored graph in which no
monochromatic subgraph is found and the code return the counterexample, or all colorings
are evaluated successfully for a monochromatic subgraph and the conditions for the Ramsey
number are satisfied (see the second figure in the appendix for an example).

6 Closing Thoughts

One of the most interesting questions I’ve been asked as I’ve presented material on this
project to fellow mathematics majors is when I expect the next Ramsey number to be
determined. That’s definitely an impossible question for me to answer as someone with very
little experience or connections in the field of Ramsey theory. Hypotheticals like the alien
invasion problem or a general understanding of the sheer quantity of colorings and subgraphs
that need to be considered seem to indicate that it may be extremely difficult to establish
an exact value for a Ramsey number. However, the optimist in me says we may reach a new
step sooner than we might expect.

People have continued to work in this field for almost a century, from van der Waerden and
Ramsey in the 1920s, to Erdös in the 30s and beyond, to Greenwood and Gleason since their
1955 proof of R(4, 4), and to Radziszowski’s decades of work that has continued into the 21st
century. This indicates a clear commitment and drive to continually develop new findings,
something that is strengthened by real-life connections to Ramsey theory like the Party
Problem or Kneading’s observations of pre-Christians English lords. Additionally, advances
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in computing technology and methodology will likely enhance the ability of mathematicians
to calculate exact values without assembling the entirety of humanity’s computing resources
a la the alien invasion problem.

So where does this paper sit in regards to these possibilities for the future? As I noted in
the introduction, the novelty of this work may be lacking, and may just be a blip on the radar
of some future mathematician searching for sources on Ramsey theory. But the first step to
making any advancements in Ramsey theory or with Ramsey numbers is to understand the
basics, something I attempted to convey in an comprehensible fashion over the course of this
paper. From there, the path may be unclear, but I hope that whoever continues to work in
this amazing field will keep their heads up and make their highs low and their lows high, as
that is the way we will have to alter our bounds to find the next Ramsey number.

Appendices

Figure 8: Two functions written in the Python language. BaseConverter takes a base 10
integer value and an integer base as its inputs and outputs an array (or list) of integers
corresponding to the conversion of the base 10 integer into an integer in the input base.
GraphCreator takes an base 10 integer value and a dimension n for an n × n matrix and
returns an n × n matrix. The purpose of this code is to create an adjacency matrix for
a specific 2-coloring of a graph Kn. The GraphCreator takes an integer value and uses
BaseConverter to turn that value into a base 2 bit array that defines the specific coloring
of the graph. GraphCreator then fills in the n× n matrix with 1 or -1 values based on this
coloring and outputs the resulting adjacency matrix that reflects this coloring.
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Figure 9: Code written in the Python language. The function SubgraphFinder takes an ad-
jacency matrix and the dimension of a complete graph as inputs and outputs a true or false
value depending on whether the adjacency matrix contains a complete monochromatic sub-
graph of the dimension entered as an input. The remaining code below the SubgraphFinder
tests conditions for R(5, 5) = 45. The while loop runs through all colorings of K45 and
tries to identify whether each coloring has a monochromatic K5. If it does, a verification
statement is written, while if there is no monochromatic K5 for a given coloring, then the
integer value that corresponds to that K45 coloring is written to identify a counterexample
for R(5, 5) = 45. Note that the while loop starts at i − 2280 because based on the way the
bit array and adjacency matrix for colorings of K45 are generated, any i value less than 2280

will have a monochromatic K5 between vertices 41, 42, 43, 44, and 45.
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