START

RECORDING

Intro to Combinatorics ("that n choose 2 stuff")

CMSC 250

Jason's sandwich

Jason's Sandwich

- Suppose that Jason has the following ingredients to make a sandwich with:
- White or black bread
- Butter, Mayo or Honey Mustard
- Romaine Lettuce, Spinach, Kale
- Bologna, Ham or Turkey
- Tomato or egg slices

Jason's Sandwich

- Suppose that Jason has the following ingredients to make a sandwich with:
- White or black bread
- Butter, Mayo or Honey Mustard
- Romaine Lettuce, Spinach, Kale
- Bologna, Ham or Turkey
- Tomato or egg slices
- How many different sandwiches can Jason make?

Jason's Sandwich

- Suppose that Jason has the following ingredients to make a sandwich with:
- White or black bread 2 options
- Butter, Mayo or Honey Mustard 3 options
- Romaine Lettuce, Spinach, Kale 3 options
- Bologna, Ham or Turkey 3 options
- Tomato or egg slices 2 options
- How many different sandwiches can Jason make?
- $2 \times 3 \times 3 \times 3 \times 2=4 \times 27=108$

The Multiplication Rule

- Suppose that E is some experiment that is conducted through k sequential steps $s_{1}, s_{2}, \ldots, s_{k}$, where every s_{i} can be conducted in n_{i} different ways.

The Multiplication Rule

- Suppose that E is some experiment that is conducted through k sequential steps $s_{1}, s_{2}, \ldots, s_{k}$, where every s_{i} can be conducted in n_{i} different ways.
- Example: $E=$ "sandwich preparation", $s_{1}=$ "chop bread", $s_{2}=$ "choose condiment", ...

The Multiplication Rule

- Suppose that E is some experiment that is conducted through k sequential steps $s_{1}, s_{2}, \ldots, s_{k}$, where every s_{i} can be conducted in n_{i} different ways.
- Example: $E=$ "sandwich preparation", $s_{1}=$ "chop bread", $s_{2}=$ "choose condiment", ...
- Then, the total number of ways that E can be conducted in is

$$
\prod_{i=1}^{k} n_{i}=n_{1} \times n_{2} \times \cdots \times n_{k}
$$

A Familiar Example

- How many subsets are there of a set of 4 elements?
- Example: $\{a, b, c, d\}$
- a: in or out. 2 choices.
- b: in or out. 2 choices.
- c: in or out. 2 choices.
- d: in or out. 2 choices.

A Familiar Example

- How many subsets are there of a set of 4 elements?
- Example: $\{a, b, c, d\}$
- a: in or out. 2 choices.
- b: in or out. 2 choices.
- c: in or out. 2 choices.
- d: in or out. 2 choices.

A Familiar Example

- How many subsets are there of a set of 4 elements?
- Example: $\{a, b, c, d\}$
- a: in or out. 2 choices.
- b: in or out. 2 choices.
- c: in or out. 2 choices.
- d: in or out. 2 choices.

- Generalization: there are 2^{n} subsets of a set of size n.
- But you already knew this.

Permutations

- Consider the string "machinery".

Permutations

- Consider the string "machinery".
- A permutation of "machinery" is a string which results by reorganizing the characters of "machinery" around.

Permutations

- Consider the string "machinery".
- A permutation of "machinery" is a string which results by reorganizing the characters of "machinery" around.
- Examples: chyirenma, hcyranemi, machinery (!)
- Question: How many permutations of "machinery" are there?

\# Permutations

\# Permutations

\# Permutations

\# Permutations

\# Permutations

$$
\begin{aligned}
& \text { machinery } \\
& --\frac{m}{}---\frac{a}{}--
\end{aligned}
$$

\# Permutations

$$
\begin{aligned}
& \text { machinery } \\
& --\frac{m}{-}-\underline{c} \underline{a}--
\end{aligned}
$$

\# Permutations

$$
\begin{aligned}
& \text { machinery } \\
& --\frac{m}{--\underline{c} \underline{a}--} 6 \text { options for ' } h \text { '... }
\end{aligned}
$$

\# Permutations

$$
\begin{aligned}
& \text { machinery } \\
& h_{-} \frac{\mathrm{m}}{\mathrm{~m}_{-}} \text {options for ' } h \text { '... }
\end{aligned}
$$

\# Permutations

$$
\begin{aligned}
& \text { machinery } \\
& \text { h_m_ca_ options for 'i' }
\end{aligned}
$$

\# Permutations

$$
\begin{aligned}
& m \text { achinery } \\
& \underline{h}-\underline{m}-\underline{c} \underline{a}-\underline{i} \quad 5 \text { options for ' } i^{\prime}
\end{aligned}
$$

\# Permutations

$$
\begin{aligned}
& \text { machinery } \\
& \underline{h}-\underline{m}--\underline{c} \underline{a}-\underline{i} \quad 4 \text { options for ' } n \text { ' }
\end{aligned}
$$

\# Permutations

$$
\begin{aligned}
& m a c h i n e r y \\
& \underline{h}-\underline{m}-\underline{n} \underline{c} \underline{a}-\underline{i} \quad 4 \text { options for ' } n \text { ' }
\end{aligned}
$$

\# Permutations

$$
\begin{aligned}
& \text { machinery } \\
& \underline{h}-\underline{m}-\underline{n} c \underline{a}-\underline{i} \quad 3 \text { options for 'e' }
\end{aligned}
$$

\# Permutations

$$
\begin{aligned}
& \text { machinery } \\
& \underline{h} \underline{e} \underline{m}-\underline{n} \underline{c} \underline{a}-\underline{i} \quad 3 \text { options for 'e' }
\end{aligned}
$$

\# Permutations

$$
\begin{aligned}
& m a c h i n e r y \\
& \underline{h} \underline{e} \underline{m}-\underline{n} \underline{c} \underline{a}-\underline{i} \quad 2 \text { options for ' } r \text { ' }
\end{aligned}
$$

\# Permutations

$$
\begin{aligned}
& m \text { achinery } \\
& \underline{h} \underline{e} \underline{m}-\underline{n} \underline{c} \underline{a} r \underline{i} \quad 2 \text { options for ' } r \text { ' }
\end{aligned}
$$

\# Permutations

$$
\begin{aligned}
& m a c h i n e r y \\
& \underline{h} \underline{\operatorname{e}} \underline{m}-\underline{n} \underline{c} \underline{\operatorname{ar}} \underline{\underline{i}} \quad 1 \text { option for ' } y \text { ' }
\end{aligned}
$$

\# Permutations

$$
\begin{aligned}
& \text { machinery } \\
& \underline{h} \underline{e} \underline{m} \underline{y} \underline{n} \underline{c} \underline{a r} \underline{i} \quad 1 \text { option for ' } y \text { ' }
\end{aligned}
$$

\# Permutations

$$
\begin{aligned}
& \text { machinery } \\
& \underline{h} \underline{e} \underline{m} \underline{y} \underline{n} \underline{c} \underline{a r} \underline{i} \quad 1 \text { option for ' } y^{\prime}
\end{aligned}
$$

Total \#possible permutations $=9 \times 8 \times \cdots \times 2 \times 1=9!=$ 362880

\# Permutations

$$
\begin{aligned}
& \text { machinery } \\
& \underline{h} \underline{e} \underline{m} \underline{y} \underline{n} \underline{\operatorname{ar}} \underline{\underline{i}} \quad 1 \text { option for ' } y^{\prime}
\end{aligned}
$$

Total \#possible permutations $=9 \times 8 \times \cdots \times 2 \times 1=9!=$ 362880

That's a lot! (Original string has length 9)

\# Permutations

```
machinery
    1 option for ' y'
```

 Total \#possible permutations \(=9 \times 8 \times \cdots \times 2 \times 1=9!=\) 362880
 In general, for a string of length \boldsymbol{n} we have ourselves n ! different permutations!

That's a lot! (Original string has length 9)

Permutations

- Now, consider the string "puzzle".

Permutations

- Now, consider the string "puzzle".
- How many permutations are there of this string?

Permutations

- Now, consider the string "puzzle".
- How many permutations are there of this string?
- Note that two letters in puzzle are the same.

Permutations

- Now, consider the string "puzzle".
- How many permutations are there of this string?
- Note that two letters in puzzle are the same.
- Call the first $z z_{1}$ and the second $z z_{2}$

Permutations

- Now, consider the string "puzzle".
- How many permutations are there of this string?
- Note that two letters in puzzle are the same.
- Call the first $z z_{1}$ and the second $z z_{2}$
- So, one permutation of $p u z_{1} z_{2} l e$ is $p u z_{2} z_{1} l e$

Permutations

- Now, consider the string "puzzle".
- How many permutations are there of this string?
- Note that two letters in puzzle are the same.
- Call the first $z z_{1}$ and the second $z z_{2}$
- So, one permutation of $p u z_{1} z_{2} l e$ is $p u z_{2} z_{1} l e$
- But this is clearly equivalent to $p u z_{1} z_{2} l e$, so we wouldn't want to count it!

Permutations

- Now, consider the string "puzzle".
- How many permutations are there of this string?
- Note that two letters in puzzle are the same.
- Call the first $z z_{1}$ and the second $z z_{2}$
- So, one permutation of $p u z_{1} z_{2} l e$ is $p u z_{2} z_{1} l e$
- But this is clearly equivalent to $p u z_{1} z_{2} l e$, so we wouldn't want to count it!
- So clearly the answer is not 6 ! (6 is the length of "puzzle")

Permutations

- Now, consider the string "puzzle".
- How many permutations are there of this string?
- Note that two letters in puzzle are the same.
- Call the first $z z_{1}$ and the second $z z_{2}$
- So, one permutation of $p u z_{1} z_{2} l e$ is $p u z_{2} z_{1} l e$
- But this is clearly equivalent to $p u z_{1} z_{2}$ le, so we wouldn't want to count it!
- So clearly the answer is not 6 ! (6 is the length of "puzzle")
- What is the answer?

Thought Experiment

- Pretend the two 'z's in "puzzle" are different, e.g z_{1}, z_{2}

Thought Experiment

- Pretend the two 'z's in "puzzle" are different, e.g z_{1}, z_{2}
- Then, 6! permutations, as discussed

Thought Experiment

- Pretend the two 'z's in "puzzle" are different, e.g z_{1}, z_{2}
- Then, 6! permutations, as discussed
- Now we have the "equivalent" permutations, for instance

$$
\begin{aligned}
& z_{1} p u l z_{2} e \\
& z_{2} \text { pulz }
\end{aligned}
$$

Thought Experiment

- Pretend the two 'z's in "puzzle" are different, e.g z_{1}, z_{2}
- Then, 6! permutations, as discussed
- Now we have the "equivalent" permutations, for instance

$$
\begin{aligned}
& z_{1} \text { pulz } z_{2} e \\
& z_{2} \text { pulz }
\end{aligned}
$$

- We want to not doublecount these!

Thought Experiment

$$
\begin{aligned}
& z_{1} p u l z_{2} e \\
& z_{2} \text { pulz }
\end{aligned}
$$

We want to not doublecount such permutations!

- Then, we need to stop pretending that the ' z 's are different

Thought Experiment

$$
\begin{aligned}
& z_{1} p u l z_{2} e \\
& z_{2} p u l z_{1} e
\end{aligned}
$$

We want to not doublecount such permutations!

- Then, we need to stop pretending that the ' z 's are different
- Bad news: 6! is overcount : ${ }^{\text {: }}$

Thought Experiment

$$
\begin{aligned}
& z_{1} p u l z_{2} e \\
& z_{2} p u l z_{1} e
\end{aligned}
$$

We want to not doublecount such permutations!

- Then, we need to stop pretending that the ' z 's are different
- Bad news: 6 ! is overcount $(:$
- Good news: 6 ! is an overcount in a precise way! :) Everything is counted exactly twice!

Thought Experiment

$$
\begin{aligned}
& z_{1} p u l z_{2} e \\
& z_{2} p u l z_{1} e
\end{aligned}
$$

We want to not doublecount such permutations!

- Then, we need to stop pretending that the ' z 's are different
- Bad news: 6 ! is overcount $(:$
- Good news: 6 ! is an overcount in a precise way! :) Everything is counted exactly twice!
- Answer: $\frac{6!}{2}$

Permutations

- Now, consider the string "scissor".

Permutations

- Now, consider the string "scissor".
- How many permutations of "scissor" are there?

Permutations

- Now, consider the string "scissor".
- How many permutations of "scissor" are there?
- Note that three letters in "scissor" are the same.
- As previously discussed, the answer cannot be 7! (7 is the length of "scissor")

Permutations

- Now, consider the string "scissor".
- How many permutations of "scissor" are there?
- Note that three letters in "scissor" are the same.
- As previously discussed, the answer cannot be 7! (7 is the length of "scissor")
- Observe all the possible positions of the various 's's:
- $S_{1} \mathrm{Cis}_{2} \mathrm{~S}_{3}$ or
- $s_{1} \mathrm{Ci}_{3} \mathrm{~S}_{2}$ or
- s_{2} cis $_{1} s_{3}$ or
- $s_{2} \mathrm{Ci}_{3} \mathrm{~S}_{1}$ or
- s_{3} cis $_{1} s_{2}$ or
- s_{3} Cis $_{2} s_{1}$ or

Permutations

- Now, consider the string "scissor".
- How many permutations of "scissor" are there?
- Note that three letters in "scissor" are the same.
- As previously discussed, the answer cannot be 7! (7 is the length of "scissor")
- Observe all the possible positions of the various 's's:
- s_{1} Cis $_{2} S_{3}$ or
- $s_{1} \mathrm{Ci}_{3} \mathrm{~S}_{2}$ or
- $s_{2} \mathrm{Cis}_{1} s_{3}$ or
- $s_{2} \mathrm{Ci}_{3} \mathrm{~S}_{1}$ or
- s_{3} cis $_{1} s_{2}$ or
- $s_{3} \mathrm{Ci}_{2} \mathrm{~s}_{1}$ or

3! $=6$ different ways to arrange those 3 's's

Final Answer

- Think of it like this: How many times can I fit essentially the same string into the number of permutations of the original string?

Final Answer

- Think of it like this: How many times can I fit essentially the same string into the number of permutations of the original string?
- Therefore, the total \#permutations when not assume different ' s 's is

$$
\frac{7!}{3!}=\frac{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7}{1 \times 2 \times 3}=20 \times 42=840
$$

Complex Overcounting

- Consider now the string "onomatopoeia".

Complex Overcounting

- Consider now the string "onomatopoeia".
- 12 letters, with 4 'o's, 2 'a's

Complex Overcounting

- Consider now the string "onomatopoeia".
- 12 letters, with 4 'o's, 2 'a's
- Considering the characters being different, we have:

$$
o_{1} \mathrm{no}_{2} \mathrm{mato}_{3} \mathrm{po}_{4} \text { eia }
$$

Complex Overcounting

- Consider now the string "onomatopoeia".
- 12 letters, with 4 'o's, 2 'a's
- Considering the characters being different, we have:

$$
\begin{aligned}
& o_{1} \mathrm{no}_{2} \mathrm{mato}_{3} p o_{4} e i a \\
& o_{1} \mathrm{no}_{2} \mathrm{mato}_{4} \mathrm{po}_{3} e i a
\end{aligned}
$$

Complex Overcounting

- Consider now the string "onomatopoeia".
- 12 letters, with 4 'o's, 2 'a's
- Considering the characters being different, we have:

$$
\begin{aligned}
& o_{1} \mathrm{no}_{2} \mathrm{mato}_{3} p o_{4} e i a \\
& o_{1} \mathrm{no}_{2} \mathrm{mat}_{4} \mathrm{po}_{3} e i a \\
& o_{1} \mathrm{no}_{3} \text { mato }_{4} p o_{2} e i a
\end{aligned}
$$

Complex Overcounting

- Consider now the string "onomatopoeia".
- 12 letters, with 4 'o's, 2 'a's
- Considering the characters being different, we have:

How many such positionings of the 'o's are possible?

```
6
```

12

Something Else

Complex Overcounting

- Consider now the string "onomatopoeia".
- 12 letters, with 4 'o's, 2 'a's
- Considering the characters being different, we have:

How many such positionings of the 'o's are possible?
$o_{1} \mathrm{no}_{2} \mathrm{mato}_{3} \mathrm{po}_{4}$ eia,
$o_{1} \mathrm{no}_{2}$ mato $_{4} \mathrm{po}_{3}$ eia,
$o_{1} \mathrm{no}_{3}$ mato $_{4} \mathrm{po}_{2}$ eia,
6
12

Something
Else
$4!=24$ different ways.

Complex Overcounting

- However, we also have the two 'a's to consider!

Complex Overcounting

- However, we also have the two 'a's to consider!
- Fortunately, those equivalent permutations are simpler to count:

$$
\begin{aligned}
& \text { onoma }_{1} \text { topoei } a_{2} \\
& \text { onoma }_{2} \text { topoei } a_{1}
\end{aligned}
$$

Complex Overcounting

- However, we also have the two 'a's to consider!
- Fortunately, those equivalent permutations are simpler to count:

$$
\begin{aligned}
& \text { onoma }_{1} \text { topoei } a_{2} \\
& \text { onoma }_{2}{\text { topoei } a_{1}}^{\text {an }}
\end{aligned}
$$

- Key: for every one of these two (equivalent) permutations, we have 4 ! equivalent permutations because of the 'o's! (MULTIPLICATION RULE)

Complex Overcounting

- However, we also have the two 'a’s to consider!
- Fortunately, those equivalent permutations are simpler to count:

$$
\begin{aligned}
& \text { onoma }_{1} \text { topoei } a_{2} \\
& \text { onoma }_{2} \text { topoei }_{1}
\end{aligned}
$$

- Key: for every one of these two (equivalent) permutations, we have 4! equivalent permutations because of the 'o's! (MULTIPLICATION RULE)
- Final answer:
\#permutations $=\frac{12!}{4!\cdot 2!}=\frac{5 \cdot 6 \cdot \ldots \cdot 11 \cdot 12}{2}=5 \cdot 6^{2} \cdot \ldots \cdot 10 \cdot 11=9,979,200$

Important "Pedagogical" Note

- In the previous problem, we came up with the quantity

$$
\frac{12!}{4!\cdot 2!}=9,979,200
$$

Important "Pedagogical" Note

- In the previous problem, we came up with the quantity

$$
\frac{12!}{4!\cdot 2!}=9,979,200
$$

- How you should answer in an exam: $\frac{12!}{4!\cdot 2!}$

Important "Pedagogical" Note

- In the previous problem, we came up with the quantity

$$
\frac{12!}{4!\cdot 2!}=9,979,200
$$

- How you should answer in an exam: $\frac{12 \text { ! }}{4!\cdot 2!}$
- Don't perform computations, like 9,979,200
- Helps you save time and us when grading ()

For You!

- Consider the word "bookkeeper" (according to this website, the only unhyphenated word in English with three consecutive repeated letters)

For You!

- Consider the word "bookkeeper" (according to this website, the only unhyphenated word in English with three consecutive repeated letters)
- How many non-equivalent permutations of "bookkeeper" exist?

For You!

- Consider the word "bookkeepe-" (according to this website, the only unhyphenated word in English witth three consecutive repeated letters)
- How many non-equivalent permutations of "bookkeeper" exist?

More Practice

- What about the \#non-equivalent permutations for the word

combinatorics

More Practice

- What about the \#non-equivalent permutations for the word

combinatorics

$$
\frac{13!}{2!\cdot 2!\cdot 2!}=\cdots
$$

General Template

- Total \# permutations of a string σ of letters of length n where there are $n_{a}{ }^{\prime} a^{\prime} s, n_{b}{ }^{\prime} b^{\prime} s, n_{c}{ }^{\prime} c^{\prime} s, \ldots n_{z} z^{\prime} s$

$$
\frac{n!}{n_{a}!\times n_{b}!\times \cdots \times n_{z}!}
$$

General Template

- Total \# permutations of a string σ of letters of length n where there are $n_{a}{ }^{\prime} a^{\prime} s, n_{b}{ }^{\prime} b^{\prime} s, n_{c}{ }^{\prime} c^{\prime} s, \ldots n_{z}{ }^{\prime} z^{\prime} s$

$$
\frac{n!}{n_{a}!\times n_{b}!\times \cdots \times n_{z}!}
$$

- Claim: This formula is problematic when some letter (a, b, \ldots, z) is not contained in σ

General Template

- Total \# permutations of a string σ of letters of length n where there are $n_{a}{ }^{\prime} a^{\prime} s, n_{b}{ }^{\prime} b^{\prime} s, n_{c}{ }^{\prime} c^{\prime} s, \ldots n_{z} z^{\prime} s$

$$
\frac{n!}{n_{a}!\times n_{b}!\times \cdots \times n_{z}!}
$$

- Claim: This formula is problematic when some letter (a, b, \ldots, z) is not contained in σ

r-permutations

- Warning: permutations (as we've talked about them) are best presented with strings.

r-permutations

- Warning: permutations (as we've talked about them) are best presented with strings.
- r-permutations: Those are best presented with sets.
- Note that $r \in \mathbb{N}$
- So we can have 2-permutations, 3-permutations, etc

r-permutations: Example

- I have ten people.

- My goal: pick three people for a picture, where order of the people matters.

r-permutations: Example

- I have ten people.

- My goal: pick three people for a picture, where order of the people matters.
- Examples: shortest-to-tallest or tallest-to-shortest or something-inbetween

r-permutations: Example

- I have ten people.

- My goal: pick three people for a picture, where order of the people matters.
- Examples: Jenny-Fred-Bob or Fred-Jenny-Bob or Fred-Bob-Jenny

r-permutations: Example

- I have ten people.

- My goal: pick three people for a picture, where order of the people matters.
- In how many ways can I pick these people?

r-permutations: Example

r-permutations: Example

r-permutations: Example

10 ways
to pick
the first
person...

r-permutations: Example

10 ways
to pick
the first
person...

r-permutations: Example

10 ways
to pick
the first
person..

r-permutations: Example

r-permutations: Example

9 ways to
pick the
second
person..

r-permutations: Example

r-permutations: Example

8 ways to pick the
third
person...

r-permutations: Example

8 ways to pick the
third
person...

r-permutations: Example

8 ways to pick the
third
person...

r-permutations: Example

For a total of $10 \times$
$9 \times 8=720$ ways.

r-permutations: Example

 people for this photo. You guys figure out

For a total of $10 \times$
$9 \times 8=720$ ways.

Note: $10 \times 9 \times 8=$ $\frac{10!}{(10-3)!}$

Example on Books

- Clyde has the following books on his bookshelf
- Epp, Rosen, Hughes, Bogart, Davis, Shaffer, Sellers, Scott

Example on Books

- Clyde has the following books on his bookshelf
- Epp, Rosen, Hughes, Bogart, Davis, Shaffer, Sellers, Scott
- Jason wants to borrow any 5 of them and read them in the order he picks them in

Example on Books

- Clyde has the following books on his bookshelf
- Epp, Rosen, Hughes, Bogart, Davis, Shaffer, Sellers, Scott
- Jason wants to borrow any 5 of them and read them in the order he picks them in.
- In how many ways can Jason get smart by reading those books?

Example on Books

- Clyde has the following books on his bookshelf
- Epp, Rosen, Hughes, Bogart, Davis, Shaffer, Sellers, Scott
- Jason wants to borrow any 5 of them and read them in the order he picks them in.
- In how many ways can Jason get smart by reading those books?

$$
\frac{8!}{(8-5)!}=\frac{8!}{3!}
$$

General Formula

- Let $n, r \in \mathbb{N}$ such that $0 \leq r \leq n$. The total ways in which we can select r elements from a set of n elements where order matters is equal to:

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

General Formula

- Let $n, r \in \mathbb{N}$ such that $0 \leq r \leq n$. The total ways in which we can select r elements from a set of n elements where order matters is equal to:

" P " for permutation. This quantity is known as the r-permutations of a set with n elements.

Pop Quizzes

$$
\text { 1) } P(n, 1)=\cdots
$$

Pop Quizzes

1) $P(n, 1)=\cdots \square n+n$

- Two ways to convince yourselves:
- Formula: $\frac{n!}{(n-1)!}=n$
- Semantics of r-permutations: In how many ways can I pick 1 element from a set of n elements? Clearly, I can pick any one of n elements, so n ways.

Pop Quizzes

$$
\text { 2) } P(n, n)=\cdots \quad 1 \quad n \quad n \quad n
$$

Pop Quizzes

- Again, two ways to convince ourselves:
- Formula: $\frac{n!}{(n-n)!}=\frac{n!}{0!}$
- Semantics: n ! ways to pick all of the elements of a set and put them in order!

Pop Quizzes

$$
\text { 3) } P(n, 0)=\ldots, \square 0 \quad 1 \quad \square n \square \begin{array}{lll}
n!
\end{array}
$$

Pop Quizzes

3) $P(n, 0)=\ldots \square \square$

- Formula: $\frac{n!}{(n-0)!}=\frac{n!}{n!}=1$
- Semantics: Only one way to pick nothing: just pick nothing and leave!

Practice

1. How many MD license plates are possible to create?

Practice

1. How many MD license plates are possible to create? $26^{2} \cdot 10^{5}$

Practice

1. How many MD license plates are possible to create? $26^{2} \cdot 10^{5}$
2. How many ATM PINs are possible?

Practice

1. How many MD license plates are possible to create? $26^{2} \cdot 10^{5}$
2. How many ATM PINs are possible? 10^{4}

Practice

1. How many MD license plates are possible to create? $26^{2} \cdot 10^{5}$
2. How many ATM PINs are possible? 10^{4}
3. How many words of length 10 can I construct from the English alphabet, where letters can be chosen:

Practice

1. How many MD license plates are possible to create? $26^{2} \cdot 10^{5}$
2. How many ATM PINs are possible? 10^{4}
3. How many words of length 10 can I construct from the English alphabet, where letters can be chosen:
a) With replacement (as in, I can reuse letters)

Practice

1. How many MD license plates are possible to create? $26^{2} \cdot 10^{5}$
2. How many ATM PINs are possible? 10^{4}
3. How many words of length 10 can I construct from the English alphabet, where letters can be chosen:
a) With replacement (as in, I can reuse letters) 26^{10}

Practice

1. How many MD license plates are possible to create? $26^{2} \cdot 10^{5}$
2. How many ATM PINs are possible? 10^{4}
3. How many words of length 10 can I construct from the English alphabet, where letters can be chosen:
a) With replacement (as in, I can reuse letters) 26^{10}
b) Without replacement (as in, I cannot reuse letters)

Practice

1. How many MD license plates are possible to create? $26^{2} \cdot 10^{5}$
2. How many ATM PINs are possible? 10^{4}
3. How many words of length 10 can I construct from the English alphabet, where letters can be chosen:
a) With replacement (as in, I can reuse letters) 26^{10}
b) Without replacement (as in, I cannot reuse letters) $P(26,10)=\frac{26!}{16!}$

Practice

1. How many MD license plates are possible to create? $26^{2} \cdot 10^{5}$
2. How many ATM PINs are possible? 10^{4}
3. How many words of length 10 can I construct from the English alphabet, where letters can be chosen:
a) With replacement (as in, I can reuse letters) 26^{10}

Wi. Without replacement (as in, I cannot reuse letters) $P(26,10)=\frac{26!}{16!}$
Remember these phrases!

Combinations (that " n choose r " stuff)

- Earlier, we discussed this example:

- Our goal was to pick three people for a picture, where order of the people mattered.

Combinations (that " n choose r" stuff)

- Earlier, we discussed this example:

- We now change this setup to forming a PhD defense committee (also 3 people).
- In this setup, does order matter?

Combinations (that " n choose r" stuff)

Combinations (that " n choose r " stuff)

Combinations (that " n choose r " stuff)

We can make this selection in $P(10,3)$ ways... but since order doesn't matter, we have 3! permutations of these people that are equivalent.

Combinations (that " n choose r " stuff)

We can make this selection in $P(10,3)$ ways... but since order doesn't matter, we have 3! permutations of these people that are equivalent.

Combinations (that " n choose r " stuff)

We can make this selection in $P(10,3)$ ways... but since order doesn't matter, we have 3! permutations of these people that are equivalent.

Combinations (that " n choose r " stuff)

We can make this selection in $P(10,3)$ ways... but since order doesn't matter, we have 3! permutations of these people that are equivalent.

Combinations (that " n choose r " stuff)

Overcount :

In a precise way ()

We can make this selection in $P(10,3)$ ways... but since order doesn't matter, we have 3! permutations of these people that are equivalent.

Closer Analysis of Example

- Note that essentially we are asking you: Out of a set of 10 people, how many subsets of 3 people can I retrieve?

$\binom{n}{r}$ Notation

- The quantity

$$
\frac{P(10,3)}{3!}
$$

is the number of 3 -combinations from a set of size 10, denoted thus:

$$
\binom{n}{3}
$$

and pronounced " n choose 3 ".

$\binom{n}{r}$ Notation

- Let $n, r \in \mathbb{N}$ with $0 \leq r \leq n$
- Given a set A of size n, the total number of subsets of A of size r is:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

$\binom{n}{r}$ Notation

- Let $n, r \in \mathbb{N}$ with $0 \leq r \leq n$
- Given a set A of size n, the total number of subsets of A of size r is:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

- Pop quiz: $(\forall n, r \in \mathbb{N})\left[(0 \leq r \leq n) \Rightarrow\left(\binom{n}{r} \leq P(n, r)\right)\right]$

$\binom{n}{r}$ Notation

- Let $n, r \in \mathbb{N}$ with $0 \leq r \leq n$
- Given a set A of size n, the total number of subsets of A of size r is:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

- Pop quiz: $(\forall n, r \in \mathbb{N})\left[(0 \leq r \leq n) \Rightarrow\left(\binom{n}{r} \leq P(n, r)\right)\right]$

Quiz

$$
\text { 1. }\binom{n}{1}=
$$

$$
\text { 1. }\binom{n}{1}=n
$$

$$
\begin{aligned}
& \text { 1. }\binom{n}{1}=n \\
& \text { 2. }\binom{n}{n}=
\end{aligned}
$$

1. $\binom{n}{1}=n$
2. $\binom{n}{n}=1$ (Note how this differs from $\left.P(n, n)=n!\right)$

Quiz

1. $\binom{n}{1}=n$
2. $\binom{n}{n}=1$ (Note how this differs from $P(n, n)=n!$)
3. $\binom{n}{0}=$

4. $\binom{n}{1}=n$
5. $\binom{n}{n}=1$ (Note how this differs from $P(n, n)=n!$)
6. $\binom{n}{0}=1$

STOP

RECORDING

