START RECORDING

Algebraic / Transcendental Numbers

CMSC 250

Comparing Cardinalities

- Let A, B be sets.
- If there exists an injection (1-1 mapping) between A and B, but no surjection (onto mapping) from A to B, we will say that |A| < |B|

Comparing Cardinalities

- Let A, B be sets.
- If there exists an injection (1-1 mapping) between A and B, but no surjection (onto mapping) from A to B, we will say that |A| < |B|

Comparing Cardinalities

- Let A, B be sets.
- If there exists an injection (1-1 mapping) between A and B, but no surjection (onto mapping) from A to B, we will say that |A| < |B|

Re-Define Rationals

• A rational is the root of an equation of the form

 $a \cdot x + b = 0$

where $a, b \in \mathbb{Z}$.

- Also called algebraic numbers of degree 1 (ALG1)
 - Note: ALG1 is countable.

• A number is in ALG2 if it is a root of an equation of the form

 $a \cdot x^2 + b \cdot x + c = 0$

where $a, b, c \in \mathbb{Z}$

Examples of Numbers in ALG2

- 3 is a root of $x^2 9 = 0$
- $\sqrt{2}$ is a root of $x^2 2 = 0$ (so irrationals can be in ALG2!)

•
$$-\sqrt{2}$$
 is a root of $x^2 - 2 = 0$

- *i* is a root of $x^2 + 1 = 0$ (so complex numbers can be in ALG2!)
- 3i + 1 is a root of $x^2 2x + 10 = 0$ (convince yourselves)

• Recall: a number is in ALG2 if it is a root of an equation of the form

$$a \cdot x^2 + b \cdot x + c = 0$$

where $a, b, c \in \mathbb{Z}$

• Is ALG2 countable?

• Recall: a number is in ALG2 if it is a root of an equation of the form

$$a \cdot x^2 + b \cdot x + c = 0$$

where $a, b, c \in \mathbb{Z}$

• Is ALG2 countable?

ALG2 Caveat (Countability Proof Follows)

- 1. Yes, ALG2 does contain some irrationals, e.g $\sqrt{5}$
- 2. ALG2 does not contain all of the reals. There are notes on the class slides website to show that 2^{1/3} is not in ALG2. The proof requires linear algebra. It is not hard; however, it is not required for this course.
- ALG3 (you can guess) does not contain all of the reals. There are notes on the class website to show that 2^{1/4} is not in ALG3. This proof also requires linear algebra. It is also not hard; however, it is not required for this course.
- 4. Key: there aren't "that many" irrationals in ALG2.

ALG2 is Countable

- 1. We identify $a \cdot x^2 + b \cdot x + c = 0$ with triple (a, b, c)
- 2. Recall: $(a, b, c) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.
- 3. Recall: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ is countable.
- 4. So we can list out all quadratic equations as q_1, q_2, q_3 ...
 - Let r_{11}, r_{12} be roots of q_1 ,
 - Let r_{21} , r_{22} be roots of q_2 ,
 - ...
 - Let r_{i1} , r_{i2} be roots of q_i ,
- 5. List of roots: $r_{11}, r_{12}, r_{21}, r_{22}, r_{31}, r_{32}, ...$

ALG2 is Countable

- List of roots: $r_{11}, r_{12}, r_{21}, r_{22}, r_{31}, r_{32}, \dots$
- This shows that ALG2 is countable
- Caveat: some roots might appear more than once in the list.
- 2 solutions:
 - 1. Just remove them (like in the proof that \mathbb{Q} is countable)
 - 2. Theorem: subset of countable set is countable. (prove it yourselves)

• A number is in ALG3 if it is a root of an equation of the form

$$a \cdot x^3 + b \cdot x^2 + c \cdot x + d = 0$$

where $a, b, c, d \in \mathbb{Z}$

• A number is in ALG3 if it is a root of an equation of the form

$$a \cdot x^3 + b \cdot x^2 + c \cdot x + d = 0$$

where $a, b, c, d \in \mathbb{Z}$

• Is ALG3 countable?

• A number is in ALG3 if it is a root of an equation of the form

$$a \cdot x^3 + b \cdot x^2 + c \cdot x + d = 0$$

ALG3 is Countable

- 1. We identify $a \cdot x^3 + b \cdot x^2 + c \cdot x + d = 0$ with triple (a, b, c, d)
- 2. Recall: $(a, b, c, d) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.
- 3. Recall: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ is countable.
- 4. Can list out all cubic equations as $q_1, q_2, q_3 \dots$
 - Let r_{11}, r_{12}, r_{13} be roots of q_1 ,
 - Let r_{21}, r_{22}, r_{23} be roots of q_2 ,
 - ...
 - Let r_{i1}, r_{i2}, r_{i3} be roots of q_i ,
- 5. List of roots: $r_{11}, r_{12}, r_{13}, r_{21}, r_{22}, r_{23}, r_{31}, r_{32}, r_{33}, \dots$

ALG3 is Countable

- 1. We identify $a \cdot x^3 + b \cdot x^2 + c \cdot x + d = 0$ with triple (a, b, c, d)
- 2. Recall: $(a, b, c, d) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.
- 3. Recall: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ is countable.
- 4. Can list out all cubic equations as $q_1, q_2, q_3 \dots$
 - Let r_{11}, r_{12}, r_{13} be roots of q_1 ,
 - Let r_{21}, r_{22}, r_{23} be roots of q_2 ,
 - ...
 - Let r_{i1}, r_{i2}, r_{i3} be roots of q_i ,
- 5. List of roots: $r_{11}, r_{12}, r_{13}, r_{21}, r_{22}, r_{23}, r_{31}, r_{32}, r_{33}, \dots$

Same argument: ALG3 is countable

ALGi Countable $(i \in \mathbb{N})$

• We prove this:

ALGi Countable $(i \in \mathbb{N})$

- We prove this:
- NOPE!
 - We are busy people (class moto)

The Algebraic Numbers

- Definition: A number is algebraic if it's a root of a polynomial with integer co-efficients.
- Denote the set *ALG*. Note that:

$$ALG = \bigcup_{i=1}^{+\infty} ALG_i$$

Since union of countable sets is countable and each ALG_i is countable, ALG is countable ⁽²⁾

Definition

- A number is **transcendental** if it is does not satisfy any algebraic equation over the integers.
- Denote the set of transcendental numbers with *TN*
- $TN = \mathbb{C} ALG$ (remember: \mathbb{C} is the set of complex numbers).

• Can you name numbers in *TN*?

- Can you name numbers in *TN*?
 - π (this is a hard theorem, says Bill)

- Can you name numbers in *TN*?
 - π (this is a hard theorem, says Bill)
 - e (easier but still hard)

- Can you name numbers in *TN*?
 - π (this is a hard theorem, says Bill)
 - *e* (easier but still hard)
 - Any more?

- Can you name numbers in *TN*?
 - π (this is a hard theorem, says Bill)
 - *e* (easier but still hard)
 - Any more?
 - " 2π ", says Jason (Don't be a wiseguy, says Bill)

- Can you name numbers in *TN*?
 - π (this is a hard theorem, says Bill)
 - *e* (easier but still hard)
 - Any more?
 - " 2π ", says Jason ("Don't be a wiseguy", says Bill)
 - Any more **actually** different?

- Can you name numbers in *TN*?
 - π (this is a hard theorem, says Bill)
 - *e* (easier but still hard)
 - Any more?
 - " 2π ", says Jason ("Don't be a wiseguy", says Bill)
 - Any more **actually** different?

- Can you name numbers in *TN*?
 - π (this is a hard theorem, says Bill)
 - *e* (easier but still hard)
 - Any more?
 - " 2π ", says Jason ("Don't be a wiseguy", says Bill)
 - Any more **actually** different?

- Can you name numbers in *TN*?
 - π (this is a hard theorem, says Bill)
 - *e* (easier but still hard)
 - Any more?
 - " 2π ", says Jason ("Don't be a wiseguy", says Bill)
 - Any more **actually** different?

- "We" (Bill) can prove that such numbers are not algebraic.
 - The proof of this will not be in the final, unless..

• Are there any other numbers in TN?

• Are there any other numbers in TN?

• Can we name any?

• Are there any other numbers in TN?

- Can we name any?
 - NO 🛞

• Are there any other numbers in TN?

- Can we name any?
 - NO 🛞
 - But hold on! We will talk about this matter soon. 😳

Size of *TN*

• Before we look inside *TN* any further, is it countable?

Size of TN

• Before we look inside *TN* any further, is it countable?

- Recall:
 - *1.* $TN = \mathbb{C} ALG$ (TransceNdental numbers are all <u>non</u>-ALG ebraic complex numbers)
 - *2.* C is uncountable (countability lecture)
 - *3. ALG* countable
 - From 1, 2 and 3 we can deduce that *TN* is uncountable

Punchline

- Most numbers are transcendental!
- But most numbers we (humans) use are not!
- Recall the proof that there exist (uncountably many) transcendental numbers:
 - *1. ALG* countable
 - *2.* \mathbb{C} is uncountable
 - 3. So $TN = \mathbb{C} ALG$ is uncountable, hence $TN \neq \emptyset$
- This proof is **non-constructive**, since it does not produce a single transcendental number!

Punchline

- Most numbers are transcendental!
- But most numbers we (humans) use are not!
- Recall the second proof, that there exist (uncountably many) transcendental numbers:
 - *1. ALG* countable
 - *2.* \mathbb{C} is uncountable
 - 3. So $TN = \mathbb{C} ALG$ is uncountable, hence $TN \neq \emptyset$
- This proof is non-constructive, since it does not produce a single transcendental number!

New topic: Cardinality

- Recall: A and B of the same size if there's a bijection from A to B.
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}^{>0}, \mathbb{Q}^{<0}, \mathbb{Q}, \mathbb{N}^{even}, \mathbb{N}^{odd}, \mathbb{Z}^{even}, \mathbb{Z}^{odd}, \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ are all of the same size

- Recall: A and B of the same size if there's a bijection from A to B.
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}^{>0}, \mathbb{Q}^{<0}, \mathbb{Q}, \mathbb{N}^{even}, \mathbb{N}^{odd}, \mathbb{Z}^{even}, \mathbb{Z}^{odd}, \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ are all of the same size
 - This cardinality is denoted \aleph_0 (aleph-naught)

• What about (0,1), [0, 1], \mathbb{R} , $\mathbb{R} \times \mathbb{R}$, $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$? Are all of these the same size?

• What about (0,1), [0, 1], \mathbb{R} , $\mathbb{R} \times \mathbb{R}$, $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$? Are all of these the same size?

• Proof follows

$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$
 Same Size as \mathbb{R}

• Tangent function: domain $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, co-domain \mathbb{R} .

• Both onto and 1-1, so bijection.

Bijection from (0, 1) to
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

• This linear function is a bijection from (0,1) to $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$:

$$f(x) = \pi \cdot x - \frac{\pi}{2}$$

- So we have a bijection from (0, 1) to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$...
 - ... and a bijection from $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ to \mathbb{R} ...
 - Which means that (0, 1), $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and \mathbb{R} are all the same size!

[0, 1], (0, 1], [0, 1), (0, 1)

- All the same size.
- We are busy people and will not prove this.

$(0,1), (0,1) \times (0,1)$

• We define a bijection $f: (0, 1) \mapsto (0, 1) \times (0, 1)$ as follows:

$$f(0.x_1x_2x_3x_4x_5x_6...) = (0.x_1x_3x_5..., 0.x_2x_4x_6...)$$

- Surprising, since (0, 1) is 1D and $(0, 1) \times (0, 1)$ is 2D.
- Bijections do **not necessarily** preserve dimension!

$(0,1), (0,1) \times (0,1) \times (0,1)$

• We define a bijection $f: (0, 1) \mapsto (0, 1) \times (0, 1) \times (0, 1)$ as follows:

$$f(0.x_1x_2x_3...) = (0.x_1x_4x_7..., 0.x_2x_5x_8..., 0.x_3x_6x_9...)$$

$(0,1), (0,1) \times (0,1) \times (0,1)$

• We define a bijection $f: (0, 1) \mapsto (0, 1) \times (0, 1) \times (0, 1)$ as follows:

$$f(0, x_1 x_2 x_3 \dots) = (0, x_1 x_4 x_7 \dots, 0, x_2 x_5 x_8 \dots, 0, x_3 x_6 x_9 \dots)$$

$$x_i \text{ with } i \equiv 1 \pmod{3} x_i \text{ with } i \equiv 2 \pmod{3} x_i \text{ with } i \equiv 2 \pmod{3}$$

Explaining the Result of our Earlier Voting

- Recall that we now know (0,1) same size as $\mathbb R$
- We have also established that (0,1), [0, 1], R, R × R, R × R × R all the same size, which explains the vote of "Yes".

$\mathcal{P}(\mathbb{N}), \mathbb{R}$ Same Size?

- \mathbb{R} uncountable
- $\mathcal{P}(\mathbb{N})$ uncountable
- Are they the same size?

$\mathcal{P}(\mathbb{N}), \mathbb{R}$ Same Size!

- \mathbb{R} uncountable
- $\mathcal{P}(\mathbb{N})$ uncountable
- Are they the same size?

• Normally, reals are in base 10. Example:

$$3.14159 \dots = 3 \times 10^{0} + \frac{1}{10} + \frac{4}{10^{2}} + \frac{1}{10^{3}} + \frac{5}{10^{4}} + \frac{9}{10^{5}}$$

• Normally, reals are in base 10. Example:

$$3.14159 \dots = 3 \times 10^{0} + \frac{1}{10} + \frac{4}{10^{2}} + \frac{1}{10^{3}} + \frac{5}{10^{4}} + \frac{9}{10^{5}}$$

• Why do we use base 10?

• Normally, reals are in base 10. Example:

$$3.14159 \dots = 3 \times 10^{0} + \frac{1}{10} + \frac{4}{10^{2}} + \frac{1}{10^{3}} + \frac{5}{10^{4}} + \frac{9}{10^{5}}$$

• Why do we use base 10?

• Could just as easily express all reals in base 2.

$$11.0110 \dots = 1 \times 2^{1} + 1 \times 2^{0} + \frac{0}{2^{1}} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \frac{0}{10^{4}}$$

• So, all numbers in [0, 1] are expressible as an infinite sequence of 0s and 1s in base 2.

Endpoints of [0, 1]

• Note that:

$$0.1111111_{(2)} = \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \cdots$$

Endpoints of [0, 1]

• Note that:

$$0.1111111_{(2)} = \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots \mapsto 1$$

Endpoints of [0, 1]

• Note that:

$$0.1111111_{(2)} = \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots \mapsto 1 \text{ (by convention, } = 1)$$

• Upshot: we view elements of [0, 1] as infinite sequences of 0s and 1s

$\mathcal{P}(\mathbb{N})$, \mathbb{R} Same Size!

- View $\mathcal{P}(\mathbb{N})$ as an infinite sequence of 0s and 1s
 - Let's see how this would work for **P**, the set of primes:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	
0	0	1	1	0	1	0	1	0	0	0	1	0	1	•••

$\mathcal{P}(\mathbb{N})$, \mathbb{R} Same Size!

- View $\mathcal{P}(\mathbb{N})$ as an infinite sequence of 0s and 1s
 - Let's see how this would work for **P**, the set of primes:

which is a real number in (0, 1) expressed in base 2!

Bijection from $\mathcal{P}(\mathbb{N})$ to [0,1]

• $a_1a_2a_3 \dots \in \{0,1\}^{\omega}$ (infinite sequences of 0s and 1s), hence an element of $\mathcal{P}(\mathbb{N})$

maps to

 $0.a_1a_2a_3...$

which is a real number in base 2.

Shorter Version

- 1. [0, 1] can be viewed as the set of all infinite sequences of 0s and 1s. $(\{0, 1\}^{\omega})$
- 2. $\mathcal{P}(\mathbb{N})$ can also be viewed as the same set.
- 3. Hence, they are the same size.

Shorter Version

- 1. [0, 1] can be viewed as the set of all infinite sequences of 0s and 1s. $(\{0, 1\}^{\omega})$
- 2. $\mathcal{P}(\mathbb{N})$ can also be viewed as the same set.
- 3. Hence, they are the same size.
- Recall: $\{0, 1\}^{\omega}$ uncountable.

Between $\mathbb N$ and $\mathbb R$

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}^{>0}, \mathbb{Q}^{<0}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ are all of the same size
- (0,1), [0, 1], \mathbb{R} , $\mathbb{R} \times \mathbb{R}$, $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$ also of the same size
- $|\mathbb{N}| < |\mathbb{R}|$ (by diagonalization)

Between $\mathbb N$ and $\mathbb R$

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}^{>0}, \mathbb{Q}^{<0}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ are all of the same size
- (0,1), [0, 1], \mathbb{R} , $\mathbb{R} \times \mathbb{R}$, $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$ also of the same size
- $|\mathbb{N}| < |\mathbb{R}|$ (by diagonalization)
- Does there exist a set A such that $|\mathbb{N}| < |A| < |\mathbb{R}|$?

Between $\mathbb N$ and $\mathbb R$

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}^{>0}, \mathbb{Q}^{<0}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ are all of the same size
- (0,1), [0,1], \mathbb{R} , $\mathbb{R} \times \mathbb{R}$, $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$ also of the same size
- $|\mathbb{N}| < |\mathbb{R}|$ (by diagonalization)
- Does there exist a set A such that $|\mathbb{N}| < |A| < |\mathbb{R}|$?

It's Actually Worse than Unknown!

- Let CH be the statement: "There is no set A such that $|\mathbb{N}| < |A| < |\mathbb{R}|$ "
- ZFC is a set of 9 axioms from which you can derive all mathematics
 - Example: If A and B are sets, so is $A \cup B$, and so are $\mathcal{P}(A), \mathcal{P}(B)$,
- *1.* $ZFC \cup CH$ does **not** lead to a contradiction.
- *2. ZFC* \cup (~ *CH*) **also** does **not** lead to a contradiction!
- 3. Hence, *CH* will **never** be proven or disproven.

"Resolving" CH

- There are those who think CH can be resolved by adding new axioms to Set Theory.
- Bill says they're **stupid**, because the axioms are not **obviously true**.

Alephs

- Reminder: N, Z, Q^{>0}, Q^{<0}, Q, N × N, N × N × N are all of the same cardinality, denoted ℵ₀ (aleph-naught)
- (0,1), [0,1], \mathbb{R} , $\mathbb{R} \times \mathbb{R}$, $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$, $P(\mathbb{N})$ also of the same size.
- How do we denote the cardinality of those sets?

$$\frac{\aleph_1}{2^{\aleph_0}} \qquad \frac{\aleph_0 + 1}{\frac{\aleph_0 + 1}{\frac{\aleph_0}{\frac{1}{2}}}}$$

Alephs

- Reminder: N, Z, Q^{>0}, Q^{<0}, Q, N × N, N × N × N are all of the same cardinality, denoted ℵ₀ (aleph-naught)
- (0,1), [0,1], \mathbb{R} , $\mathbb{R} \times \mathbb{R}$, $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$, $P(\mathbb{N})$ also of the same size.
- How do we denote the cardinality of those sets?

Why is $|\mathbb{R}|$ not denoted \aleph_1 ?

- If there's no set A such that $|\mathbb{N}| < |A| < |\mathbb{R}|$ then $|\mathbb{R}| = \aleph_1$.
- If there is one such set, then $|\mathbb{R}| = \aleph_2$.
- If there are two such sets, then...

Why is $|\mathbb{R}|$ not denoted \aleph_1 ?

- If there's no set A such that $|\mathbb{N}| < |A| < |\mathbb{R}|$ then $|\mathbb{R}| = \aleph_1$.
- If there is one such set, then $|\mathbb{R}| = \aleph_2$.
- If there are two such sets, then...
 - We won't continue adding indices to ℵ, we are busy people.

Why is $|\mathbb{R}|$ not denoted \aleph_1 ?

- If there's no set A such that $|\mathbb{N}| < |A| < |\mathbb{R}|$ then $|\mathbb{R}| = \aleph_1$.
- If there is one such set, then $|\mathbb{R}| = \aleph_2$.
- If there are two such sets, then...
 - We won't continue adding indices to ℵ, we are busy people.
- We do not (and cannot) know which among those two holds, so can't use any ℵ_i for |ℝ|.

Why is $|\mathbb{R}|$ denoted 2^{\aleph_0} ?

- $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})|$
- Recall: For any $n \in \mathbb{N}, |\mathcal{P}(\{1, 2, 3, ..., n\})| = 2^n$
- We extend this notation to $|\mathcal{P}(A)| = 2^{|A|}$.

Hence $|\mathcal{P}(\mathbb{N})| = 2^{|\mathbb{N}|} = 2^{\aleph_0}$

STOP RECORDING