START

RECORDING

Algebraic / Transcendental Numbers
 CMSC 250

Comparing Cardinalities

- Let A, B be sets.
- If there exists an injection (1-1 mapping) between A and B, but no surjection (onto mapping) from A to B , we will say that $|A|<|B|$

Comparing Cardinalities

- Let A, B be sets.
- If there exists an injection (1-1 mapping) between A and B, but no surjection (onto mapping) from A to B , we will say that $|A|<|B|$

Here's an injection...

Comparing Cardinalities

- Let A, B be sets.
- If there exists an injection (1-1 mapping) between A and B, but no surjection (onto mapping) from A to B , we will say that $|A|<|B|$

Here's an injection...

But there's no surjection $)^{0}$

Re-Define Rationals

- A rational is the root of an equation of the form

$$
a \cdot x+b=0
$$

where $a, b \in \mathbb{Z}$.

- Also called algebraic numbers of degree 1 (ALG1)
- Note: ALG1 is countable.

ALG2

- A number is in ALG2 if it is a root of an equation of the form

$$
a \cdot x^{2}+b \cdot x+c=0
$$

where $a, b, c \in \mathbb{Z}$

Examples of Numbers in ALG2

- 3 is a root of $x^{2}-9=0$
- $\sqrt{2}$ is a root of $x^{2}-2=0$ (so irrationals can be in ALG2!)
- $-\sqrt{2}$ is a root of $x^{2}-2=0$
- i is a root of $x^{2}+1=0$ (so complex numbers can be in ALG2!)
- $3 i+1$ is a root of $x^{2}-2 x+10=0$ (convince yourselves)

ALG2

- Recall: a number is in ALG2 if it is a root of an equation of the form

$$
a \cdot x^{2}+b \cdot x+c=0
$$

where $a, b, c \in \mathbb{Z}$

- Is ALG2 countable?

ALG2

- Recall: a number is in ALG2 if it is a root of an equation of the form

$$
a \cdot x^{2}+b \cdot x+c=0
$$

where $a, b, c \in \mathbb{Z}$

- Is ALG2 countable?

No
Unknown to science

ALG2 Caveat (Countability Proof Follows)

1. Yes, ALG2 does contain some irrationals, e.g $\sqrt{5}$
2. ALG2 does not contain all of the reals. There are notes on the class slides website to show that $2^{1 / 3}$ is not in ALG2. The proof requires linear algebra. It is not hard; however, it is not required for this course.
3. ALG3 (you can guess) does not contain all of the reals. There are notes on the class website to show that $2^{1 / 4}$ is not in ALG3. This proof also requires linear algebra. It is also not hard; however, it is not required for this course.
4. Key: there aren't "that many" irrationals in ALG2.

ALG2 is Countable

1. We identify $a \cdot x^{2}+b \cdot x+c=0$ with triple (a, b, c)
2. Recall: $(a, b, c) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.
3. Recall: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ is countable.
4. So we can list out all quadratic equations as $q_{1}, q_{2}, q_{3} \ldots$

- Let r_{11}, r_{12} be roots of q_{1},
- Let r_{21}, r_{22} be roots of q_{2},
- ...
- Let $r_{i 1}, r_{i 2}$ be roots of q_{i},

5. List of roots: $r_{11}, r_{12}, r_{21}, r_{22}, r_{31}, r_{32}, \ldots$

ALG2 is Countable

- List of roots: $r_{11}, r_{12}, r_{21}, r_{22}, r_{31}, r_{32}, \ldots$
- This shows that ALG2 is countable
- Caveat: some roots might appear more than once in the list.
- 2 solutions:

1. Just remove them (like in the proof that \mathbb{Q} is countable)
2. Theorem: subset of countable set is countable. (prove it yourselves)

ALG3

- A number is in ALG3 if it is a root of an equation of the form

$$
a \cdot x^{3}+b \cdot x^{2}+c \cdot x+d=0
$$

where $a, b, c, d \in \mathbb{Z}$

ALG3

- A number is in ALG3 if it is a root of an equation of the form

$$
a \cdot x^{3}+b \cdot x^{2}+c \cdot x+d=0
$$

where $a, b, c, d \in \mathbb{Z}$

- Is ALG3 countable?

Unknown to science

ALG3

- A number is in ALG3 if it is a root of an equation of the form

$$
a \cdot x^{3}+b \cdot x^{2}+c \cdot x+d=0
$$

where $a, b, c, d \in \mathbb{Z}$

- Is ALG3 countable?

Unknown to science

ALG3 is Countable

1. We identify $a \cdot x^{3}+b \cdot x^{2}+c \cdot x+d=0$ with triple (a, b, c, d)
2. Recall: $(a, b, c, d) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.
3. Recall: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ is countable.
4. Can list out all cubic equations as $q_{1}, q_{2}, q_{3} \ldots$

- Let r_{11}, r_{12}, r_{13} be roots of q_{1},
- Let r_{21}, r_{22}, r_{23} be roots of q_{2},
- ...
- Let $r_{i 1}, r_{i 2}, r_{i 3}$ be roots of q_{i},

5. List of roots: $r_{11}, r_{12}, r_{13}, r_{21}, r_{22}, r_{23}, r_{31}, r_{32}, r_{33}, \ldots$

ALG3 is Countable

1. We identify $a \cdot x^{3}+b \cdot x^{2}+c \cdot x+d=0$ with triple (a, b, c, d)
2. Recall: $(a, b, c, d) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.
3. Recall: $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ is countable.
4. Can list out all cubic equations as $q_{1}, q_{2}, q_{3} \ldots$

- Let r_{11}, r_{12}, r_{13} be roots of q_{1},
- Let r_{21}, r_{22}, r_{23} be roots of q_{2},

Same argument:

- ...
- Let $r_{i 1}, r_{i 2}, r_{i 3}$ be roots of q_{i},

5. List of roots: $r_{11}, r_{12}, r_{13}, r_{21}, r_{22}, r_{23}, r_{31}, r_{32}, r_{33}, \ldots$.

ALGi Countable $(i \in \mathbb{N})$

- We prove this:

ALGi Countable $(i \in \mathbb{N})$

- We prove this:
- NOPE!
- We are busy people (class moto)

The Algebraic Numbers

- Definition: A number is algebraic if it's a root of a polynomial with integer co-efficients.
- Denote the set $A L G$. Note that:

$$
A L G=\bigcup_{i=1}^{+\infty} A L G_{i}
$$

- Since union of countable sets is countable and each $A L G_{i}$ is countable, $A L G$ is countable ©

Definition

- A number is transcendental if it is does not satisfy any algebraic equation over the integers.
- Denote the set of transcendental numbers with TN
- $T N=\mathbb{C}-A L G$ (remember: \mathbb{C} is the set of complex numbers).

Numbers in TN

- Can you name numbers in TN?

Numbers in $T N$

- Can you name numbers in TN?
- π (this is a hard theorem, says Bill)

Numbers in $T N$

- Can you name numbers in TN?
- π (this is a hard theorem, says Bill)
- e (easier but still hard)

Numbers in $T N$

- Can you name numbers in TN?
- π (this is a hard theorem, says Bill)
- e (easier but still hard)
- Any more?

Numbers in TN

- Can you name numbers in TN?
- π (this is a hard theorem, says Bill)
- e (easier but still hard)
- Any more?
- " 2π ", says Jason (Don’t be a wiseguy, says Bill)

Numbers in $T N$

- Can you name numbers in TN?
- π (this is a hard theorem, says Bill)
- e (easier but still hard)
- Any more?
- " 2π ", says Jason ("Don’t be a wiseguy", says Bill)
- Any more actually different?

Numbers in TN

- Can you name numbers in TN?
- π (this is a hard theorem, says Bill)
- e (easier but still hard)
- Any more?
- " 2π ", says Jason ("Don’t be a wiseguy", says Bill)
- Any more actually different?
- 0.10100100000010000000000000000000000001

Numbers in TN

- Can you name numbers in TN?
- π (this is a hard theorem, says Bill)
- e (easier but still hard)
- Any more?
- " 2π ", says Jason ("Don’t be a wiseguy", says Bill)
- Any more actually different?
- 0.10100100000010000000000000000000000001

Numbers in TN

- Can you name numbers in TN?
- π (this is a hard theorem, says Bill)
- e (easier but still hard)
- Any more?
- " 2π ", says Jason ("Don’t be a wiseguy", says Bill)
- Any more actually different?
- 0.10100100000010000000000000000000000001

- "We" (Bill) can prove that such numbers are not algebraic.
- The proof of this will not be in the final, unless..

Any Other Numbers in TN?

- Are there any other numbers in $T N$?

Unknown to science

Any Other Numbers in TN?

- Are there any other numbers in $T N$?

Unknown to science

- Can we name any?

Any Other Numbers in TN?

- Are there any other numbers in $T N$?

Unknown to science

- Can we name any?
- NO ${ }^{\circ}$

Any Other Numbers in TN?

- Are there any other numbers in $T N$?

Unknown to science

- Can we name any?
- NO ${ }^{\circ}$
- But hold on! We will talk about this matter soon. ©

Size of $T N$

- Before we look inside $T N$ any further, is it countable?

Unknown to science

Size of $T N$

- Before we look inside $T N$ any further, is it countable?

Unknown to science

- Recall:

1. $T N=\mathbb{C}-A L G$ (TransceNdental numbers are all non-ALGebraic complex numbers)
2. \mathbb{C} is uncountable (countability lecture)
3. $A L G$ countable

- From 1, 2 and 3 we can deduce that $T N$ is uncountable

Punchline

- Most numbers are transcendental!
- But most numbers we (humans) use are not!
- Recall the proof that there exist (uncountably many) transcendental numbers:

1. $A L G$ countable
2. \mathbb{C} is uncountable
3. So $T N=\mathbb{C}-A L G$ is uncountable, hence $T N \neq \varnothing$

- This proof is non-constructive, since it does not produce a single transcendental number!

Punchline

- Most numbers are transcendental!
- But most numbers we (humans) use are not!
- Recall the second proof, that there exist (uncountably many) transcendental numbers:

1. ALG countable
2. \mathbb{C} is uncountable
3. So $T N=\mathbb{C}-A L G$ is uncountable, hence $T N \neq \varnothing$

- This proof is non-constructive, since it does not produce a single transcendental number!
- Hence, besides the ones we provided you with ($\pi, e, 0.10100100000010000000000000000000000001 \ldots$...) we can't give you more!

New topic: Cardinality

Cardinality

- Recall: A and B of the same size if there's a bijection from A to B.
$\cdot \mathbb{N}, \mathbb{Z}, \mathbb{Q}^{>0}, \mathbb{Q}^{<0}, \mathbb{Q}, \mathbb{N}^{\text {even }}, \mathbb{N}^{\text {odd }}, \mathbb{Z}^{\text {even }}, \mathbb{Z}^{\text {odd }}, \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ are all of the same size

Cardinality

- Recall: A and B of the same size if there's a bijection from A to B.
$\cdot \mathbb{N}, \mathbb{Z}, \mathbb{Q}^{>0}, \mathbb{Q}^{<0}, \mathbb{Q}^{(} \mathbb{N}^{\text {even }}, \mathbb{N}^{\text {odd }}, \mathbb{Z}^{\text {even }}, \mathbb{Z}^{\text {odd }}, \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ are all of the same size
- This cardinality is denoted \aleph_{0} (aleph-naught)

Cardinality

- What about $(0,1),[0,1], \mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathbb{R} \times \mathbb{R} \times \mathbb{R}$? Are all of these the same size?

Yes

No

Unknown to science

Cardinality

- What about $(0,1),[0,1], \mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathbb{R} \times \mathbb{R} \times \mathbb{R}$? Are all of these the same size?

Unknown to science

- Proof follows

$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Same Size as \mathbb{R}

- Tangent function: domain $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, co-domain \mathbb{R}.
- Both onto and 1-1, so bijection.

Bijection from $(0,1)$ to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

- This linear function is a bijection from $(0,1)$ to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$:

$$
f(x)=\pi \cdot x-\frac{\pi}{2}
$$

- So we have a bijection from $(0,1)$ to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$...
-... and a bijection from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ to \mathbb{R}...
-Which means that $(0,1),\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and \mathbb{R} are all the same size!

$[0,1],(0,1],[0,1),(0,1)$

- All the same size.
- We are busy people and will not prove this.

$(0,1),(0,1) \times(0,1)$

- We define a bijection $f:(0,1) \mapsto(0,1) \times(0,1)$ as follows:

$$
\begin{aligned}
& f\left(0 . x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} \ldots\right)= \\
& \left(0 . x_{1} x_{3} x_{5} \ldots, 0 . x_{2} x_{4} x_{6} \ldots,\right)
\end{aligned}
$$

- Surprising, since $(0,1)$ is 1 D and $(0,1) \times(0,1)$ is 2 D .
- Bijections do not necessarily preserve dimension!

$(0,1),(0,1) \times(0,1) \times(0,1)$

- We define a bijection $f:(0,1) \mapsto(0,1) \times(0,1) \times(0,1)$ as follows:

$$
\begin{aligned}
& f\left(0 . x_{1} x_{2} x_{3} \ldots\right)= \\
& \left(0 . x_{1} x_{4} x_{7} \ldots, 0 . x_{2} x_{5} x_{8} \ldots, 0 . x_{3} x_{6} x_{9} \ldots\right)
\end{aligned}
$$

$(0,1),(0,1) \times(0,1) \times(0,1)$

-We define a bijection $f:(0,1) \mapsto(0,1) \times(0,1) \times(0,1)$ as follows:

Explaining the Result of our Earlier Voting

- Recall that we now know $(0,1)$ same size as \mathbb{R}
- We have also established that (0,1), $[0,1], \mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ all the same size, which explains the vote of "Yes".

Unknown to science

$\mathcal{P}(\mathbb{N}), \mathbb{R}$ Same Size?

- \mathbb{R} uncountable
- $\mathcal{P}(\mathbb{N})$ uncountable
- Are they the same size?

Yes

No
Unknown to science

$\mathcal{P}(\mathbb{N}), \mathbb{R}$ Same Size!

- \mathbb{R} uncountable
- $\mathcal{P}(\mathbb{N})$ uncountable
- Are they the same size?

No
Unknown to science

Digression: Real Numbers in Base 10

- Normally, reals are in base 10. Example:

$$
3.14159 \ldots=3 \times 10^{0}+\frac{1}{10}+\frac{4}{10^{2}}+\frac{1}{10^{3}}+\frac{5}{10^{4}}+\frac{9}{10^{5}}
$$

Digression: Real Numbers in Base 10

- Normally, reals are in base 10. Example:

$$
3.14159 \ldots=3 \times 10^{0}+\frac{1}{10}+\frac{4}{10^{2}}+\frac{1}{10^{3}}+\frac{5}{10^{4}}+\frac{9}{10^{5}}
$$

- Why do we use base 10 ?

Digression: Real Numbers in Base 10

- Normally, reals are in base 10. Example:

$$
3.14159 \ldots=3 \times 10^{0}+\frac{1}{10}+\frac{4}{10^{2}}+\frac{1}{10^{3}}+\frac{5}{10^{4}}+\frac{9}{10^{5}}
$$

- Why do we use base 10 ?

Digression: Real Numbers in Base 2

- Could just as easily express all reals in base 2.

$$
11.0110 \ldots=1 \times 2^{1}+1 \times 2^{0}+\frac{0}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{0}{10^{4}}
$$

- So, all numbers in $[0,1]$ are expressible as an infinite sequence of $0 s$ and 1 s in base 2 .

Endpoints of [0, 1]

- Note that:

$$
0.1111111_{(2)}=\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\cdots
$$

Endpoints of $[0,1]$

- Note that:

$$
0.1111111_{(2)}=\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\cdots \mapsto 1
$$

Endpoints of $[0,1]$

- Note that:

$$
0.1111111_{(2)}=\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\cdots \mapsto 1(\text { by convention, }=1)
$$

- Upshot: we view elements of [0, 1] as infinite sequences of 0 s and 1 s

$\mathcal{P}(\mathbb{N}), \mathbb{R}$ Same Size!

- View $\mathcal{P}(\mathbb{N})$ as an infinite sequence of 0 s and $1 s$
- Let's see how this would work for \mathbf{P}, the set of primes:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
0	0	1	1	0	1	0	1	0	0	0	1	0	1	\ldots

$\mathcal{P}(\mathbb{N}), \mathbb{R}$ Same Size!

- View $\mathcal{P}(\mathbb{N})$ as an infinite sequence of 0 s and $1 s$
- Let's see how this would work for \mathbf{P}, the set of primes:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
0	0	1	1	0	1	0	1	0	0	0	1	0	1	\ldots

We map this to

which is a real number in $(0,1)$ expressed in base 2 !

Bijection from $\mathcal{P}(\mathbb{N})$ to $[0,1]$

- $a_{1} a_{2} a_{3} \ldots \in\{0,1\}^{\omega}$ (infinite sequences of 0 s and 1 s), hence an element of $\mathcal{P}(\mathbb{N})$
maps to

0. $a_{1} a_{2} a_{3} \ldots$
which is a real number in base 2 .

Shorter Version

1. $[0,1]$ can be viewed as the set of all infinite sequences of 0 s and 1 s . $\left(\{0,1\}^{\omega}\right)$
2. $\mathcal{P}(\mathbb{N})$ can also be viewed as the same set.
3. Hence, they are the same size.

Shorter Version

1. $[0,1]$ can be viewed as the set of all infinite sequences of 0 s and 1 s . $\left(\{0,1\}^{\omega}\right)$
2. $\mathcal{P}(\mathbb{N})$ can also be viewed as the same set.
3. Hence, they are the same size.

- Recall: $\{0,1\}^{\omega}$ uncountable.

Between \mathbb{N} and \mathbb{R}

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}^{>0}, \mathbb{Q}^{<0}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ are all of the same size
- $(0,1),[0,1], \mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ also of the same size
- $|\mathbb{N}|<|\mathbb{R}|$ (by diagonalization)

Between \mathbb{N} and \mathbb{R}

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}^{>0}, \mathbb{Q}^{<0}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ are all of the same size
- $(0,1),[0,1], \mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ also of the same size
- $|\mathbb{N}|<|\mathbb{R}|$ (by diagonalization)
- Does there exist a set A such that $|\mathbb{N}|<|A|<|\mathbb{R}|$?

Yes

No
Unknown to science

Between \mathbb{N} and \mathbb{R}

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}^{>0}, \mathbb{Q}^{<0}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ are all of the same size
- $(0,1),[0,1], \mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ also of the same size
- $|\mathbb{N}|<|\mathbb{R}|$ (by diagonalization)
- Does there exist a set A such that $|\mathbb{N}|<|A|<|\mathbb{R}|$?

Continuum
Hypothesis

It's Actually Worse than Unknown!

- Let CH be the statement: "There is no set A such that $|\mathbb{N}|<|A|<|\mathbb{R}|$ "
- ZFC is a set of 9 axioms from which you can derive all mathematics
- Example: If A and B are sets, so is $A \cup B$, and so are $\mathcal{P}(A), \mathcal{P}(B)$,

1. $Z F C \cup C H$ does not lead to a contradiction.
2. $Z F C \cup(\sim \mathrm{CH})$ also does not lead to a contradiction!
3. Hence, CH will never be proven or disproven.

"Resolving" CH

- There are those who think CH can be resolved by adding new axioms to Set Theory.
- Bill says they're stupid, because the axioms are not obviously true.

Alephs

- Reminder: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}^{>0}, \mathbb{Q}^{<0}, \mathbb{Q},, \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ are all of the same cardinality, denoted \aleph_{0} (aleph-naught)
- $(0,1),[0,1], \mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathbb{R} \times \mathbb{R} \times \mathbb{R}, P(\mathbb{N})$ also of the same size.
- How do we denote the cardinality of those sets?

$2^{N_{0}}$

$$
\aleph_{0}+1
$$

Something else

Alephs

- Reminder: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}^{>0}, \mathbb{Q}^{<0}, \mathbb{Q},, \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ are all of the same cardinality, denoted \aleph_{0} (aleph-naught)
- $(0,1),[0,1], \mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathbb{R} \times \mathbb{R} \times \mathbb{R}, P(\mathbb{N})$ also of the same size.
- How do we denote the cardinality of those sets?

Why is $|\mathbb{R}|$ not denoted \aleph_{1} ?

- If there's no set A such that $|\mathbb{N}|<|A|<|\mathbb{R}|$ then $|\mathbb{R}|=\aleph_{1}$.
- If there is one such set, then $|\mathbb{R}|=\aleph_{2}$.
- If there are two such sets, then...

Why is $|\mathbb{R}|$ not denoted \aleph_{1} ?

- If there's no set A such that $|\mathbb{N}|<|A|<|\mathbb{R}|$ then $|\mathbb{R}|=\aleph_{1}$.
- If there is one such set, then $|\mathbb{R}|=\aleph_{2}$.
- If there are two such sets, then...
- We won't continue adding indices to \aleph, we are busy people.

Why is $|\mathbb{R}|$ not denoted \aleph_{1} ?

- If there's no set A such that $|\mathbb{N}|<|A|<|\mathbb{R}|$ then $|\mathbb{R}|=\aleph_{1}$.
- If there is one such set, then $|\mathbb{R}|=\aleph_{2}$.
- If there are two such sets, then...
- We won't continue adding indices to \aleph, we are busy people.
- We do not (and cannot) know which among those two holds, so can't use any \aleph_{i} for $|\mathbb{R}|$.

Why is $|\mathbb{R}|$ denoted $2^{N_{0}}$?

- $|\mathbb{R}|=|\mathcal{P}(\mathbb{N})|$
- Recall: For any $n \in \mathbb{N},|\mathcal{P}(\{1,2,3, \ldots, n\})|=2^{n}$
- We extend this notation to $|\mathcal{P}(A)|=2^{|A|}$.

$$
\text { Hence }|\mathcal{P}(\mathbb{N})|=2^{|\mathbb{N}|}=2^{\mathbb{N}_{0}}
$$

STOP

RECORDING

