START RECORDING

Countability

CMSC 250

- Two toddlers want to compare their marbles to see who has more.
- They cannot count yet.

- Two toddlers want to compare their marbles to see who has more.
- They cannot count yet.

• They line them up and compare!

• They line them up and compare!

• Intuition for us: If we can find such a mapping between two (infinite) sets, we will say that they have the same (infinite) cardinality (or size).

- This matching of marbles
 - Every two different marbles on left go to two different marbles on right
 - Every marble on right is matched by some marble on the left

- This matching of marbles
 - Every two different marbles on left go to two different marbles on right
 - Every marble on right is matched by some marble on the left
- By Joav, this is a bijection!
- WE DEFINE TWO SETS TO BE THE SAME SIZE IF THERE IS A BIJECTION BETWEEN THEM.

Refresher on Bijections

Refresher on Bijections

• Are the following functions **bijections**?

Refresher on Bijections

• Are the following functions **bijections**?

1. f(x) = |x|

Quiz on Bijections

-3

-2

 $^{-1}$

0

1

2

3

• Are the following functions **bijections**?

1.
$$f(x) = |x| No$$

Refresher on Bijections

• Are the following functions **bijections**?

Yes No

1.
$$f(x) = |x| \text{No}$$

2. $f(x) = a \cdot x + b, \ b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$

Straight line in coordinate plane

Refresher on Bijections

• Are the following functions **bijections**?

1. f(x) = |x| No 2. $f(x) = a \cdot x + b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$ Yes 3. $g(x) = a \cdot x^2, a > 0$

Refresher on Bijections

• Are the following functions **bijections**?

1. f(x) = |x| No2. $f(x) = a \cdot x + b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$ Yes 3. $g(x) = a \cdot x^2, a > 0 \text{ No}$

Refresher on Bijections

• Are the following functions **bijections**?

Yes No

1.
$$f(x) = |x| \text{ No}$$

2. $f(x) = a \cdot x + b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$ Yes
3. $g(x) = a \cdot x^2, a > 0 \text{ No}$
4. $h(n) = 4n - 1, n \in \mathbb{Z}$

Refresher on Bijections

• Are the following functions **bijections**?

1. f(x) = |x| NoNon-surjective! Set h(n) = y and2. $f(x) = a \cdot x + b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$ solve for n:solve for n:3. $g(x) = a \cdot x^2, a > 0 \text{ No}$ $4n - 1 = y \Rightarrow n = \frac{y+1}{4}$ 4. $h(n) = 4n - 1, n \in \mathbb{Z} \text{ No}$ $4n - 1 = y \Rightarrow n = \frac{y+1}{4}$

There are infinitely many choices of y for which $n \notin \mathbb{Z}!$

Refresher on Bijections

• Are the following functions **bijections**?

Yes No

1.
$$f(x) = |x|$$
 No
2. $f(x) = a \cdot x + b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$ Yes
3. $g(x) = a \cdot x^2, a > 0$ No
4. $h(n) = 4n - 1, n \in \mathbb{Z}$ No
5. $h(x) = 4x - 1,$

Refresher on Bijections

• Are the following functions **bijections**?

Yes No

1. f(x) = |x| No 2. $f(x) = a \cdot x + b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$ Yes 3. $g(x) = a \cdot x^2, a > 0$ No 4. h(n) = 4n - 1 $n \in \mathbb{Z}$ No 3. f(x) = 4n - 1 $n \in \mathbb{Z}$ No 3. $g(x) = a \cdot x^2, a > 0$ No 4. h(n) = 4n - 1 $n \in \mathbb{Z}$ No

4.
$$h(n) = 4n - 1, n \in \mathbb{Z}$$

5. $h(x) = 4x - 1$ Yes

$$4n - 1 = y \Rightarrow n = \frac{y + 1}{4}$$

For every real y, there's always a **real** solution n. Injective, since it's of the form of (2) with $a \neq 0$.

Countable Sets

- Definition: A set S is said to be countable if there exists a bijection from a subset of N^{≥1} to S.
 - Sometimes, this bijection is called an enumeration.
 - Alternatively, yet still rigorously: If we can form some sequence out of its elements (or, if we can enumerate its elements)
 - Equivalently, blending in Physics: If every one of its elements can be reached in finite time.

• Every finite set is countable.

• Every finite set is countable.

• Why?

- Every finite set is countable.
 - Why?
 - Suppose that S is a finite set. Since it's finite, it contains n elements, for n ∈ N. This means that S can be enumerated, like so:

$$S = \{s_1, s_2, s_3, \dots, s_n\}$$

But this means that there exists a bijection from $\{1, 2, ..., n\}$ to S, where $\{1, 2, ..., n\} \subseteq \mathbb{N}!$

- Since all finite sets are countable, might as well limit ourselves to the exploration of **infinite sets** that might also be **countable**.
 - We call those "countably infinite" sets.
- Let such a set be called S. Then, to prove that it's countable, we need to find some bijection b from N^{≥1} to S.

- Since all finite sets are countable, might as well limit ourselves to the exploration of **infinite sets** that might also be **countable**.
 - We call those "countably infinite" sets.
- Let such a set be called S. Then, to prove that it's countable, we need to find some bijection b from N^{≥1} to S.
- Is $b: \mathbb{N}^{\geq 1} \mapsto \mathbb{N}^{\geq 1}$ such that

b(n) = n

a bijection?

- Since all finite sets are countable, might as well limit ourselves to the exploration of **infinite sets** that might also be **countable**.
 - We call those "countably infinite" sets.
- Let such a set be called S. Then, to prove that it's countable, we need to find some bijection b from N^{≥1} to S.
- Is $b: \mathbb{N}^{\geq 1} \mapsto \mathbb{N}^{\geq 1}$ such that

b(n) = n

a bijection?

- Since all finite sets are countable, might as well limit ourselves to the exploration of **infinite sets** that might also be **countable**.
 - We call those "countably infinite" sets.
- Let such a set be called S. Then, to prove that it's countable, we need to find some bijection b from N^{≥1} to S.
- Is $b: \mathbb{N}^{\geq 1} \mapsto \mathbb{N}^{\geq 1}$ such that

b(n) = n

- Since all finite sets are countable, might as well limit ourselves to the exploration of **infinite sets** that might also be **countable**.
 - We call those "countably infinite" sets.
- Let such a set be called S. Then, to prove that it's countable, we need to find some bijection b from N^{≥1} to S.
- Is $b: \mathbb{N}^{\geq 1} \mapsto \mathbb{N}^{\geq 1}$ such that

Countability of \mathbb{N}

• Is \mathbb{N} countable? (recall, $0 \in \mathbb{N}$)

Countability of \mathbb{N}

• Through the bijection f(n) = n - 1, like so:

• Is the set $\{x \mid (x \in \mathbb{N}) \land (x \ge 17)\}$ countable?

• Is the set $\{x \mid (x \in \mathbb{N}) \land (x \ge 17)\}$ countable?

• Through the bijection f(n) = n + 16, like so:

$$\mathbb{N}^{\geq 1}$$
 1234 ..., 56, ...
 f
 $\mathbb{N}^{\geq 17}$: 17, 18, 19, 20, ..., 72 ...

• Is the set $\{x \mid (x \in \mathbb{N}) \land (x \equiv 0 \pmod{2})\}$ countable?

• Is the set $\{x \mid (x \in \mathbb{N}) \land (x \equiv 0 \pmod{2})\}$ countable?

 $\mathbb{N}^{\geq 1}$: 1, 2, 3, 4, ...

ℕ^{*even*}: 0, 2, 4, 6, ...

Countability of Other $A \subseteq \mathbb{N}$

• Is the set $\{x \mid (x \in \mathbb{N}) \land (x \equiv 0 \pmod{2})\}$ countable?

N^{≥1}: 1, 2, 3, 4, ...

$$| | | | | f$$

N^{even}: 0, 2, 4, 6, ...

$$f(n) = 2(n-1)$$

• Is \mathbb{Z} countable?

$$f: \mathbb{N} \mapsto \mathbb{Z}, f(n) = \begin{cases} \frac{n}{2} \\ -\frac{n+1}{2} \end{cases}$$

if n is even

if n is odd

• *f* is...

$$f: \mathbb{N} \mapsto \mathbb{Z}, f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ -\frac{n+1}{2} & \text{if } n \text{ is odd} \end{cases}$$

Countability of ${\ensuremath{\mathbb Z}}$

- *f* is...
 - onto, since every integer is mapped to

$$f: \mathbb{N} \mapsto \mathbb{Z}, f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ -\frac{n+1}{2} & \text{if } n \text{ is odd} \end{cases}$$

Countability of ${\ensuremath{\mathbb Z}}$

• 1-1, since no two naturals map to the same integer

Countability of ${\ensuremath{\mathbb Z}}$

- 1-1, since no two naturals map to the same integer
- So it's a bijection, and \mathbb{Z} is countable!

• Is \mathbb{Z}^{even} countable?

0, 2, -2, 4, -4, 6, -6 ... 1 2 3 4 5 6 7

0, 2, -2, 4, -4, 6, -6 ... 1 2 3 4 5 6 7

 $f(n) = \begin{cases} 0, & n = 1 \\ n, & n = 2, 4, 6, \dots \\ -n+1, & n = 3, 5, 7, \dots \end{cases}$

0, 2, -2, 4, -4, 6, -6 ... 1 2 3 4 5 6 7

$$f(n) = \begin{cases} 0, & n = 1 \\ n, & n = 2, 4, 6, \dots \\ -n+1, & n = 3, 5, 7, \dots \end{cases}$$
 Both onto and 1-1

• If f and g are bijections, then $g(f(x)) = (f \circ g)(x)$ is also a bijection

- If f and g are bijections, then $g(f(x)) = (f \circ g)(x)$ is also a bijection
 - Prove this at home!

- If f and g are bijections, then $g(f(x)) = (f \circ g)(x)$ is also a bijection
 - Prove this at home!
- So, since we know that ${\mathbb Z}$ is countable...

- If f and g are bijections, then $g(f(x)) = (f \circ g)(x)$ is also a bijection
 - Prove this at home!
- So, since we know that $\ensuremath{\mathbbm Z}$ is countable...
 - i.e that there's a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z} ...

- If f and g are bijections, then $g(f(x)) = (f \circ g)(x)$ is also a bijection
 - Prove this at home!
- So, since we know that $\ensuremath{\mathbb{Z}}$ is countable...
 - i.e that there's a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z} ...
 - If we find a bijection from \mathbb{Z} to \mathbb{Z}^{even} ...

- If f and g are bijections, then $g(f(x)) = (f \circ g)(x)$ is also a bijection
 - Prove this at home!
- So, since we know that $\ensuremath{\mathbb{Z}}$ is countable...
 - i.e that there's a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z} ...
 - *If we find a bijection* from \mathbb{Z} to \mathbb{Z}^{even} ...
 - We will have a bijection from N^{≥1} to Z^{even}, and Z^{even} is, therefore, countable!

- If f and g are bijections, then $g(f(x)) = (f \circ g)(x)$ is also a bijection
 - Prove this at home!
- So, since we know that $\ensuremath{\mathbb{Z}}$ is countable...
 - i.e that there's a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z} ...
 - If we find a bijection from \mathbb{Z} to \mathbb{Z}^{even} ...
 - We will have a bijection from N^{≥1} to Z^{even}, and Z^{even} is, therefore, countable!

...,
$$-6, -4, -2, 0, 2, 4, 6, ...$$
 $f(n) = 2 * n$
..., $-3, -2, -1, 0, 1, 2, 3, ...$

- If f and g are bijections, then $g(f(x)) = (f \circ g)(x)$ is also a bijection
 - Prove this at home!
- So, since we know that \mathbb{Z} is countable...
 - i.e that there's a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z} ...
 - *If we find a bijection* from \mathbb{Z} to \mathbb{Z}^{even} ...
 - We will have a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z}^{even} , and \mathbb{Z}^{even} is, therefore, countable!

$$\dots, -6, -4, -2, 0, 2, 4, 6, \dots \qquad f(n) = 2 * n$$

$$\dots, -3, -2, -1, 0, 1, 2, 3, \dots \qquad \text{clearly bijective}$$

Countability of $\mathbb{Q}^{>0}$

• Is $\mathbb{Q}^{>0}$ countable?

Countability of $\mathbb{Q}^{>0}$

Countability of $\mathbb{Q}^{>0}$

Countability of $\mathbb{Q}^{>0}$

Countability of $\mathbb{Q}^{>0}$

- If you don't like the proof involving this "snaking" pattern, ProofWiki has 4 (!) different proofs here: <u>http://www.homeschoolmath.net/teaching/rational-numbers-</u> <u>countable.php</u>
 - (1) tries to prove the "snaking" pattern in a way that I don't find very rigorous
 - 2, 3, 4 assume other facts that we won't prove today, but are easy to prove
 - E.g the cartesian product of countable sets is also countable, or the union of countable sets is also a countable set!

• Suppose A is a countable set and $e \notin A$. Is $A \cup \{e\}$ countable?

• Suppose A is a countable set and $e \notin A$. Is $A \cup \{e\}$ countable?

- Suppose a_1, a_2, a_3, \dots is an enumeration of A.
- We then define a new enumeration b of $A \cup \{e\}$, like so:

$$b_n = \begin{cases} e, & n = 1 \\ a_{n-1}, & n \ge 2 \end{cases}$$

• Suppose A is a countable set and $e \notin A$. Is $A \cup \{e\}$ countable?

- Suppose a_1, a_2, a_3, \dots is an enumeration of A.
- We then define a new enumeration b of $A \cup \{e\}$, like so:

$$b_n = \begin{cases} e, & n = 1 \\ a_{n-1}, & n \ge 2 \end{cases}$$

Pretty much like in the case of \mathbb{N} , we just "move one index over"!

• Suppose *A* and *B* are countable sets. Is *A* U *B* countable?

• Suppose *A* and *B* are countable sets. Is *A* U *B* countable?

• For simplicity, assume A and B are countably infinite.

1, 2, 3, 4,

$$a_1, b_1, a_2, b_2...$$

• Suppose *A* and *B* are countable sets. Is *A* U *B* countable?

• For simplicity, assume A and B are countably infinite.

1, 2, 3, 4, ...,

$$a_1, b_1, a_2, b_2...$$
 $f(n) = \begin{cases} a_{(n+1)/2}, & n \text{ odd} \\ b_{n/2}, & n \text{ even} \end{cases}$

What if A or B (or both) finite?

- Caveat: the previous will **not** work if A or B end before the other ends.
 - Because some a_i , b_i might not exist.
- We leave it to you to iron out the details of what happens then.

Note: *A* U *B* U *C* countable

- If A, B, C are countable, so is $A \cup B \cup C$.
 - Since A, B are countable, $(A \cup B) = S_1$ is countable
 - $(A \cup B) \cup C = S_1 \cup C$. Since S_1, C are countable, $S_1 \cup C = (A \cup B) \cup C$ is countable.

Note: A U B U C Countable

- If A, B, C are countable, so is $A \cup B \cup C$.
 - Since A, B are countable, $(A \cup B) = S_1$ is countable
 - $(A \cup B) \cup C = S_1 \cup C$. Since S_1, C are countable, $S_1 \cup C = (A \cup B) \cup C$ is countable.
- Generally,

 $A_1, A_2, A_3, \dots A_n$ countable $\Rightarrow \bigcup_{i=1}^n A_i$ countable (Countable union of countable sets is countable)

Note: A U B U C Countable

- If A, B, C are countable, so is $A \cup B \cup C$.
 - Since A, B are countable, $(A \cup B) = S_1$ is countable
 - $(A \cup B) \cup C = S_1 \cup C$. Since S_1, C are countable, $S_1 \cup C = (A \cup B) \cup C$ is countable.
- Generally,

 $A_1, A_2, A_3, \dots A_{n,A_{n+1}}, \dots$ countable $\Rightarrow \bigcup_{i=1}^{+\infty} A_i$ countable (Countable union of countable sets is countable)

Proof on next slide!

Countable Union of Countable Sets Countable

- Here's a proof that uses the snaking patern.
- Suppose $A_i = \{a_{i_j}, j \in \mathbb{N}\}$. Then, we can arrange the elements of the A_i 'th set in the i^{th} row of a 2D matrix:

Countable Union of Countable Sets Countable

- Here's another proof that uses the snaking pattern.
- Suppose $A_i = \{a_{i_j}, j \in \mathbb{N}\}$. Then, we can arrange the elements of the A_i 'th set in the i^{th} row of a 2D matrix:

	1 st element	2 nd element	3 rd element	4 th element	
<i>A</i> ₁	<i>a</i> ₁₁	a_{1_2}	<i>a</i> ₁₃	<i>a</i> ₁₄	
A ₂	<i>a</i> ₂₁	a ₂₂	a ₂₃	a ₂₄	
<i>A</i> ₃	<i>a</i> ₃₁	a ₃₂	a ₃₃	a ₃₄	
A ₄	<i>a</i> ₄₁	a ₄₂	a ₄₃	a ₄₄	
:	•	•	•	•	•.

Countable Union of Countable Sets Countable

- Here's another proof that uses the snaking pattern.
- Suppose $A_i = \{a_{i_j}, j \in \mathbb{N}\}$. Then, we can arrange the elements of the A_i 'th set in the i^{th} row of a 2D matrix:

	1 st element	2 nd element	3 rd element	4 th element		
<i>A</i> ₁	a ₁₁ —	$\rightarrow a_{1_2}$	a ₁₃ —	$\rightarrow a_{1_4}$	—	
A ₂	a21	a ₂₂		a ₂₄		Carles and
<i>A</i> ₃	a ₃₁	a ₃₂	a ₃₃	a ₃₄		
A ₄	a ₄₁	a42	a43	a ₄₄		More pice on WWW.itth
:	: /			•	•.	Snake 'em!
						- Shake emi

• Suppose A and B are countable sets. Is $A \times B$ countable?

• Suppose A and B are countable sets. Is $A \times B$ countable?

• Proof is exactly the same as the proof that $\mathbb{Q}^{>0}$ is countable!

• Suppose A and B are countable sets. Is $A \times B$ countable?

• Proof is exactly the same as the proof that $\mathbb{Q}^{>0}$ is countable!

	b ₁	b ₂	b ₃	b 4	••••
<i>a</i> ₁	(a_1, b_1)	(a_1, b_2)	(a_1, b_3)	(a_1, b_4)	
<i>a</i> ₂	(a_2, b_1)	(a_2, b_2)	(a_2, b_3)	(a_2, b_4)	
<i>a</i> ₃	(a_3, b_1)	(a_3, b_2)	(a_3, b_3)	(a_3, b_4)	

• Suppose A and B are countable sets. Is $A \times B$ countable?

• Proof is exactly the same as the proof that $\mathbb{Q}^{>0}$ is countable!

	b ₁	b ₂	b ₃	b 4	
<i>a</i> ₁	(a_1, b_1)	(a_1, b_2)	(a_1, b_3)	(a_1, b_4)	
<i>a</i> ₂	(a_2, b_1)	(a_2, b_2)	(a_2, b_3)	(a_2, b_4)	
<i>a</i> ₃	(a_3, b_1)	(a_3, b_2)	(a_3, b_3)	(a_3, b_4)	

Countability of ${\mathbb R}$

• Is \mathbb{R} countable?

Countability of ${\mathbb R}$

• Is \mathbb{R} countable?

• Cantor's famous diagonal argument!

- Cantor's famous diagonal argument!
- The argument actually proves that the interval [0,1] is uncountable, but the result generalizes to the entirety of $\mathbb R$
 - Wait a few lectures to see why this is true.

- Proof by contradiction: Suppose that [0, 1] is countable. Then, there exists some bijection from N^{≥1} to [0, 1], i.e the reals can be enumerated in a sequence:
 - 1. 0.28422856233.....
 - 2. 0.28422856232.....
 - 3. 0.28422856231.....

n. 0.28422855001.....

• Let's create the real number $r = 0. a_1 a_2 a_3 \dots a_n \dots$ where

$$a_{i} = \begin{cases} 0, & r_{i_{i}} = 9 \\ r_{i_{i}} + 1, & 0 \le r_{i_{i}} < 9 \end{cases}$$
Note: $r_{i_{i}}$ is the i^{th} digit of the i^{th} real.

$$\begin{array}{l} r_1 = 0.28422856233 \dots \\ r_2 = 0.28422856232 \dots \\ r_3 = 0.28422856231 \dots \\ \vdots = & & \\ \vdots = & & \\ r_n = & 0.2842285500 \dots \end{array}$$

• Let's create the real number $r = 0. a_1 a_2 a_3 \dots a_n \dots$ where

$$a_{i} = \begin{cases} 0, & r_{i_{i}} = 9\\ r_{i_{i}} + 1, & 0 \le r_{i_{i}} < 9 \end{cases}$$

Note: r_{i_i} is the i^{th} digit of the i^{th} real.

• In our case, r = 0.395 ...

• Bill claims that r = 0.395 ... is the 17th real in the list.

- Bill claims that r = 0.395 ... is the 17th real in the list.
- But this cannot be true, since our real number was constructed such that it differs from the 17th real in the 17th decimal digit!

- Bill claims that r = 0.395 ... is the 17th real in the list.
- But this cannot be true, since our real number was constructed such that it differs from the 17th real in the 17th decimal digit!
- Generally speaking, r will differ from the i^{th} real in the i^{th} digit!
 - So we can't find an $k \in \mathbb{N}$ such that $0.395 \dots = r_k$.
 - Contradiction, since we assumed we can enumerate all reals in [0,1].

$|\mathsf{S}|\mathbb{N}| < |\mathbb{R}|?$

- Of course!
- But how can we say this rigorously?
- **Defn:** $|A| \leq |B|$ if there is an **injection** from A into B
- Defn: |A| < |B| if there is an injection from A into B but there is no surjection from A into B!
 - Advice: Replace injection with "1-1 mapping" and surjection with "onto"

• Is the set of all functions $f: \mathbb{N} \to \mathbb{N}$ countable?

• Is the set of all functions $f: \mathbb{N} \to \mathbb{N}$ countable?

• Cantorian proof on next slide

${f | f : \mathbb{N} \mapsto \mathbb{N}}$ Uncountable

• Assume that the set is countable. Then, all functions from ℕ to ℕ can be enumerated:

 f_1, f_2, f_3, \dots

• Construct the function $g(x) = f_x(x) + 1$. g, when given input i, is different from f_i when also given input i. So there is no $k \in \mathbb{N}$ such that $f_k = g$. Contradiction. Therefore, $\{f \mid f : \mathbb{N} \mapsto \mathbb{N}\}$ uncountable.

• Is $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ countable?

• Is $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ countable?

- Proof: $f: \mathbb{R} \mapsto \mathbb{R} \times \mathbb{R}$ such that f(x) = (x, 1) is an injection (1-1)
 - Hence, $\mathbb{R} \times \mathbb{R}$ is at least as big as \mathbb{R} , and \mathbb{R} is uncountable.
 - So , \mathbb{R} \times \mathbb{R} is uncountable.

• Is C (set of complex numbers) countable?

• Is C (set of complex numbers) countable?

- Remember: complex numbers defined as $a + b \cdot i$ for $a, b \in \mathbb{R}$.
 - $f: \mathbb{R} \times \mathbb{R} \mapsto \mathbb{C}$ such that $f((a, b)) = a + b \cdot i$ is a bijection from $\mathbb{R} \times \mathbb{R}$ to \mathbb{C}
 - But we know that $\mathbb{R} \times \mathbb{R}$ is uncountable. Therefore, \mathbb{C} is uncountable.

• Let A be any uncountable set. Is there any $B \subseteq A$ that is countable?

• Let A be any uncountable set. Is there any $B \subseteq A$ that is countable?

• Consider: [0,1] and $\left\{\frac{1}{x} \mid x \in \mathbb{N}^{\geq 1}\right\} \subseteq [0,1]$

• Let A be any uncountable set. Is there any $B \subseteq A$ that is countable?

• Consider:
$$[0,1]$$
 and $\left(\begin{array}{c}1\\x\end{array}\right| x \in \mathbb{N}^{\geq 1}\right\} \subseteq [0,1]$
All these are positive rationals!

- Let {0, 1}[∞] be the set of infinite sequences consisting only of 0s and 1s
 - Is it countable?

 Let {0, 1}[∞] be the set of infinite sequences consisting only of 0s and 1s

• Cantor-like proof in next slide!

The Set of Infinite Bit-strings is Uncountable

• Assume that the set is countable, then the strings can be enumerated:

1: 000111010101010...

2: 0101011110001101...

n: 010101000011100...

...

- Construct bit-string s which differs from the ith string in the list in the ith digit.
- Since this string is not in the list, we can't enumerate them all. Contradiction.

- Let A_1, A_2, A_3 ... be an infinite sequence of countable sets.
- Is $A_1 \times A_2 \times A_3 \times \cdots$ countable?

- Let A_1, A_2, A_3 ... be an infinite sequence of countable sets.
- Is $A_1 \times A_2 \times A_3 \times \cdots$ countable?

• Cantor-like proof in next slide!

Set of Infinite Cartesian Product of Countable Sets is Uncountable

- Notation: $a_i = \{a_{i_1}, a_{i_2}, a_{i_3}, ...\}$
- Suppose that the set is countable. Then, enumeration:

$$\begin{pmatrix} a_{1_1}, a_{1_2}, a_{1_3}, a_{1_4}, \dots \end{pmatrix}, \\ (a_{2_1}, a_{2_2}, a_{2_3}, a_{2_4}, \dots), \\ (a_{3_1}, a_{3_2}, a_{3_3}, a_{3_4}, \dots),$$

. . .

Set of Infinite Cartesian Product of Countable Sets is Uncountable

- Notation: $a_i = \{a_{i_1}, a_{i_2}, a_{i_3}, ...\}$
- Suppose that the set is countable. Then, enumeration:

$$\begin{pmatrix} a_{1_{1}}, a_{1_{2}}, a_{1_{3}}, a_{1_{4}}, \dots \end{pmatrix}, \\ \begin{pmatrix} a_{2_{1}}, a_{2_{2}}, a_{2_{3}}, a_{2_{4}}, \dots \end{pmatrix}, \\ \begin{pmatrix} a_{3_{1}}, a_{3_{2}}, a_{3_{3}}, a_{3_{4}}, \dots \end{pmatrix},$$

Construct infinite tuple $(a_{1_{x_1}}, a_{2_{x_2}}, a_{3_{x_2}}, ...)$ such that x_i is an element of A_i different from the element used in the ith position of the ith tuple!

. . .

• This tuple cannot be in the list, etc etc etc

• Is $\mathcal{P}(\mathbb{N})$ (the powerset of the naturals) countable?

• Is $\mathcal{P}(\mathbb{N})$ (the powerset of the naturals) countable?

• Cantor-like proof in next slide!

Powerset of Naturals Uncountable

- Assume that $\mathcal{P}(\mathbb{N})$ is countable. This means that we can arrange all of the subsets of \mathbb{N} in a sequence: $S_1, S_2, ...$
- Let $A = \{i \in \mathbb{N} \mid i \notin S_i\} \subseteq \mathbb{N}$
- By construction, A cannot be in the list of subsets.
- Contradiction. So $\mathcal{P}(\mathbb{N})$ uncountable.

Infinite Number of Infinities

- We just showed that $\mathbb{N} < \mathcal{P}(\mathbb{N})$
- Similar proof: for any set $A, A < \mathcal{P}(A)$

 $\mathbb{N} < \mathcal{P}(\mathbb{N}) < \mathcal{P}(\mathcal{P}(\mathbb{N})) < \mathcal{P}(\mathcal{P}(\mathbb{N})) > \cdots$

Infinite Number of Infinities

- We just showed that $\mathbb{N} < \mathcal{P}(\mathbb{N})$
- Similar proof: for any set $A, A < \mathcal{P}(A)$

$$\mathbb{N} < \mathcal{P}(\mathbb{N}) < \mathcal{P}(\mathcal{P}(\mathbb{N})) < \mathcal{P}(\mathcal{P}(\mathbb{N})) > \cdots$$

• How many levels of infinity are there?

Infinite Number of Infinities

- We just showed that $\mathbb{N} < \mathcal{P}(\mathbb{N})$
- Similar proof: for any set $A, A < \mathcal{P}(A)$

$$\mathbb{N} < \mathcal{P}(\mathbb{N}) < \mathcal{P}(\mathcal{P}(\mathbb{N})) < \mathcal{P}(\mathcal{P}(\mathbb{N})) > \cdots$$

• How many levels of infinity are there?

STOP RECORDING