START

RECORDING

Countability

CMSC 250

Motivation

- Two toddlers want to compare their marbles to see who has more.
- They cannot count yet.

Motivation

- Two toddlers want to compare their marbles to see who has more.
- They cannot count yet.

How do they find out who has more?

Motivation

- They line them up and compare!

Motivation

- They line them up and compare!

Motivation

- They line them up and compare!

- Intuition for us: If we can find such a mapping between two (infinite) sets, we will say that they have the same (infinite) cardinality (or size).

Motivation

- This matching of marbles

- Every two different marbles on left go to two different marbles on right
- Every marble on right is matched by some marble on the left

Motivation

- This matching of marbles

- Every two different marbles on left go to two different marbles on right
- Every marble on right is matched by some marble on the left
- By Joav, this is a bijection!
- WE DEFINE TWO SETS TO BE THE SAME SIZE IF THERE IS A BIJECTION BETWEEN THEM.

Refresher on Bijections

All domains and
codomains \mathbb{R}, unless otherwise stated

Refresher on Bijections

- Are the following functions bijections?

All domains and
codomains \mathbb{R}, unless otherwise stated

Refresher on Bijections

- Are the following functions bijections?

1. $f(x)=|x|$

All domains and

 codomains \mathbb{R}, unless otherwise stated
Quiz on Bijections

- Are the following functions bijections?

1. $f(x)=|x|$ No

All domains and
codomains \mathbb{R}, unless otherwise stated

Refresher on Bijections

- Are the following functions bijections?

1. $f(x)=|x|$ No
2. $f(x)=a \cdot x+b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$

All domains and codomains \mathbb{R}, unless otherwise stated

Refresher on Bijections

- Are the following functions bijections?

Yes

1. $f(x)=|x|$ No
2. $f(x)=a \cdot x+b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$ Yes

Straight line in coordinate plane

All domains and codomains \mathbb{R}, unless otherwise stated

Refresher on Bijections

- Are the following functions bijections?

Yes

1. $f(x)=|x|$ No
2. $f(x)=a \cdot x+b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$ Yes
3. $g(x)=a \cdot x^{2}, a>0$

All domains and codomains \mathbb{R}, unless otherwise stated

Refresher on Bijections

- Are the following functions bijections?

Yes

No

1. $f(x)=|x|$ No
2. $f(x)=a \cdot x+b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$ Yes
3. $g(x)=a \cdot x^{2}, a>0$ No

All domains and

codomains \mathbb{R}, unless

Refresher on Bijections

- Are the following functions bijections?

1. $f(x)=|x|$ No
2. $f(x)=a \cdot x+b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$ Yes
3. $g(x)=a \cdot x^{2}, a>0$ No
4. $h(n)=4 n-1, n \in \mathbb{Z}$

All domains and

codomains \mathbb{R}, unless

Refresher on Bijections

- Are the following functions bijections?

Yes

No

1. $f(x)=|x|$ No
2. $f(x)=a \cdot x+b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$ Yes
3. $g(x)=a \cdot x^{2}, a>0$ No
4. $h(n)=4 n-1, n \in \mathbb{Z}$ No

Non-surjective! Set $h(n)=y$ and solve for n :

$$
4 n-1=y \Rightarrow n=\frac{y+1}{4}
$$

There are infinitely many choices of y for which $n \notin \mathbb{Z}$!

All domains and

codomains \mathbb{R}, unless otherwise stated

Refresher on Bijections

- Are the following functions bijections?

1. $f(x)=|x|$ No
2. $f(x)=a \cdot x+b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$ Yes
3. $g(x)=a \cdot x^{2}, a>0$ No
4. $h(n)=4 n-1, n \in \mathbb{Z}$ No
5. $h(x)=4 x-1$,

All domains and

Refresher on Bijections

- Are the following functions bijections?

Yes

No

1. $f(x)=|x|$ No
2. $f(x)=a \cdot x+b, b \in \mathbb{R}, a \in \mathbb{R}^{\neq 0}$ Yes
3. $g(x)=a \cdot x^{2}, a>0$ No
4. $h(n)=4 n-1, n \in \mathbb{Z}$ No
5. $h(x)=4 x-1$ Yes

Surjective and injective! Surjective, since, if we set $h(n)=y$ and solve for n :

$$
4 n-1=y \Rightarrow n=\frac{y+1}{4}
$$

For every real y, there's always a real solution n. Injective, since it's of the form of (2) with $a \neq 0$.

Countable Sets

- Definition: A set S is said to be countable if there exists a bijection from a subset of $\mathbb{N}^{\geq 1}$ to S.
- Sometimes, this bijection is called an enumeration.
- Alternatively, yet still rigorously: If we can form some sequence out of its elements (or, if we can enumerate its elements)
- Equivalently, blending in Physics: If every one of its elements can be reached in finite time.

Finite Sets and Countability

- Every finite set is countable.

Finite Sets and Countability

- Every finite set is countable.
- Why?

Finite Sets and Countability

- Every finite set is countable.
- Why?
- Suppose that S is a finite set. Since it's finite, it contains n elements, for $n \in \mathbb{N}$. This means that S can be enumerated, like so:

$$
S=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right\}
$$

But this means that there exists a bijection from $\{1,2, \ldots, n\}$ to S, where $\{1,2, \ldots, n\} \subseteq \mathbb{N}$!

Infinite Sets and Countability

- Since all finite sets are countable, might as well limit ourselves to the exploration of infinite sets that might also be countable.
- We call those "countably infinite" sets.
- Let such a set be called S. Then, to prove that it's countable, we need to find some bijection b from $\mathbb{N}^{\geq 1}$ to S.

Infinite Sets and Countability

- Since all finite sets are countable, might as well limit ourselves to the exploration of infinite sets that might also be countable.
- We call those "countably infinite" sets.
- Let such a set be called S. Then, to prove that it's countable, we need to find some bijection b from $\mathbb{N}^{\geq 1}$ to S.
- Is $b: \mathbb{N}^{\geq 1} \mapsto \mathbb{N}^{\geq 1}$ such that

$$
b(n)=n
$$

a bijection?

Infinite Sets and Countability

- Since all finite sets are countable, might as well limit ourselves to the exploration of infinite sets that might also be countable.
- We call those "countably infinite" sets.
- Let such a set be called S. Then, to prove that it's countable, we need to find some bijection b from $\mathbb{N}^{\geq 1}$ to S.
- Is $b: \mathbb{N}^{\geq 1} \mapsto \mathbb{N}^{\geq 1}$ such that

$$
b(n)=n
$$

a bijection?

Infinite Sets and Countability

- Since all finite sets are countable, might as well limit ourselves to the exploration of infinite sets that might also be countable.
- We call those "countably infinite" sets.
- Let such a set be called S. Then, to prove that it's countable, we need to find some bijection b from $\mathbb{N}^{\geq 1}$ to S.
- Is $b: \mathbb{N}^{\geq 1} \mapsto \mathbb{N}^{\geq 1}$ such that

$$
b(n)=n
$$

a bijection?

Infinite Sets and Countability

- Since all finite sets are countable, might as well limit ourselves to the exploration of infinite sets that might also be countable.
- We call those "countably infinite" sets.
- Let such a set be called S. Then, to prove that it's countable, we need to find some bijection b from $\mathbb{N}^{\geq 1}$ to S.
- Is b : $\mathbb{N}^{\geq 1} \mapsto \mathbb{N}^{\geq 1}$ such that

$$
b(n)=n
$$

a bijection?

Conclusion: $\mathbb{N}^{\geq 1}$

is countably infinite

Countability of \mathbb{N}

- Is \mathbb{N} countable? (recall, $0 \in \mathbb{N}$)

Yes

No

Countability of \mathbb{N}

- Is \mathbb{N} countable? (recall, $0 \in \mathbb{N}$)

Yes

No

- Through the bijection $f(n)=n-1$, like so:

$$
\begin{gathered}
\mathbb{N}^{\geq 1}, 1,4, \ldots, \ldots \\
\mathbb{N}: 0,1,2,3, \ldots, 55, \ldots
\end{gathered}
$$

Countability of Other $\mathrm{A} \subseteq \mathbb{N}$

- Is the set $\{x \mid(x \in \mathbb{N}) \wedge(x \geq 17)\}$ countable?

Yes

No

Countability of Other $\mathrm{A} \subseteq \mathbb{N}$

- Is the set $\{x \mid(x \in \mathbb{N}) \wedge(x \geq 17)\}$ countable?

- Through the bijection $f(n)=n+16$, like so:

$$
\begin{gathered}
\mathbb{N}^{\geq 1}, 12,34, \ldots, 56, \ldots \\
\mathbb{N}^{\geq 17}: 17,18,19,20, \ldots, 72 \ldots
\end{gathered}
$$

Countability of Other $\mathrm{A} \subseteq \mathbb{N}$

- Is the set $\{x \mid(x \in \mathbb{N}) \wedge(x \equiv 0(\bmod 2)\}$ countable?

Countability of Other $\mathrm{A} \subseteq \mathbb{N}$

- Is the set $\{x \mid(x \in \mathbb{N}) \wedge(x \equiv 0(\bmod 2)\}$ countable?

$$
\begin{aligned}
& \mathbb{N}^{\geq 1}: \quad 1,2,3,4, \ldots \\
& \mathbb{N}^{\text {even }}: \\
& 0,2,4,6, \ldots
\end{aligned}
$$

Countability of Other $\mathrm{A} \subseteq \mathbb{N}$

- Is the set $\{x \mid(x \in \mathbb{N}) \wedge(x \equiv 0(\bmod 2)\}$ countable?

$$
\begin{aligned}
& \mathbb{N}^{\geq 1}: \quad 1,2,3,4, \ldots \\
& \mathbb{N}^{\text {even }}: 0,2,4,6, \ldots \\
& f(n)=2(n-1)
\end{aligned}
$$

Countability of \mathbb{Z}

-Is \mathbb{Z} countable?
Yes
No

Countability of \mathbb{Z}

-Is \mathbb{Z} countable?

$0,1,-1,2,-2,3,-3, \ldots$
1234567

Countability of \mathbb{Z}

-Is \mathbb{Z} countable?

Countability of \mathbb{Z}

-Is \mathbb{Z} countable?

$0,1,-1,2,-2,3,-3, \ldots$
$\begin{array}{lllll}12 & 3 & 4 & 6\end{array}$

$$
f: \mathbb{N} \mapsto \mathbb{Z}, f(n)=\left\{\begin{array}{l}
\frac{n}{2} \\
-\frac{n+1}{2}
\end{array}\right.
$$

if n is even
if n is odd

Countability of \mathbb{Z}

- Is \mathbb{Z} countable?

- f is...

$$
f: \mathbb{N} \mapsto \mathbb{Z}, f(n)=\left\{\begin{array}{l}
\frac{n}{2} \\
-\frac{n+1}{2}
\end{array}\right.
$$

Countability of \mathbb{Z}

- Is \mathbb{Z} countable?

- f is...
- onto, since every integer is mapped to

$$
f: \mathbb{N} \mapsto \mathbb{Z}, f(n)=\left\{\begin{array}{l}
\frac{n}{2} \\
-\frac{n+1}{2}
\end{array}\right.
$$

Countability of \mathbb{Z}

- Is \mathbb{Z} countable?

- f is...
- onto, since every integer is mapped to
- 1-1, since no two naturals map to the same integer

$$
f: \mathbb{N} \mapsto \mathbb{Z}, f(n)=\left\{\begin{array}{l}
\frac{n}{2} \\
-\frac{n+1}{2}
\end{array}\right.
$$

Countability of \mathbb{Z}

- Is \mathbb{Z} countable?

- f is...
- onto, since every integer is mapped to
- 1-1, since no two naturals map to the same integer
- So it's a bijection, and \mathbb{Z} is countable!

Countability of $\mathbb{Z}^{\text {even }}$

- Is $\mathbb{Z}^{\text {even }}$ countable?

Yes

No

Countability of $\mathbb{Z}^{\text {even }}$

- Is $\mathbb{Z}^{\text {even }}$ countable?

$$
\begin{aligned}
& 0,2,-2,4,-4,6,-6 \\
& 12
\end{aligned} \begin{array}{lllll}
\\
1 & 3 & 4 & 5 & 6
\end{array}
$$

Countability of $\mathbb{Z}^{\text {even }}$

- Is $\mathbb{Z}^{\text {even }}$ countable?

$0,2,-2,4,-4,6,-6 \ldots$
1234567

$$
f(n)= \begin{cases}0, & n=1 \\ n, & n=2,4,6, \ldots \\ -n+1, & n=3,5,7, \ldots\end{cases}
$$

Countability of $\mathbb{Z}^{\text {even }}$

- Is $\mathbb{Z}^{\text {even }}$ countable?

$$
\begin{array}{lllll}
0,2, & -2,4, & -4, & 6, & -6 \\
1 & 2 & 3 & 4 & 5 \\
\hline
\end{array}
$$

$$
f(n)=\left\{\begin{array}{l}
0 \\
n \\
-n+1
\end{array}\right.
$$

$$
n=1
$$

$$
n=2,4,6, \ldots
$$

Both onto and 1-1

Countability of $\mathbb{Z}^{\text {even }}$

- If f and g are bijections, then $g(f(x))=(f \circ g)(x)$ is also a bijection

Countability of $\mathbb{Z}^{\text {even }}$

- If f and g are bijections, then $g(f(x))=(f \circ g)(x)$ is also a bijection
- Prove this at home!

Countability of $\mathbb{Z}^{\text {even }}$

- If f and g are bijections, then $g(f(x))=(f \circ g)(x)$ is also a bijection
- Prove this at home!
- So, since we know that \mathbb{Z} is countable...

Countability of $\mathbb{Z}^{\text {even }}$

- If f and g are bijections, then $g(f(x))=(f \circ g)(x)$ is also a bijection
- Prove this at home!
- So, since we know that \mathbb{Z} is countable...
- i.e that there's a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z}...

Countability of $\mathbb{Z}^{\text {even }}$

- If f and g are bijections, then $g(f(x))=(f \circ g)(x)$ is also a bijection
- Prove this at home!
- So, since we know that \mathbb{Z} is countable...
- i.e that there's a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z}...
- If we find a bijection from \mathbb{Z} to $\mathbb{Z}^{\text {even }}$

Countability of $\mathbb{Z}^{\text {even }}$

- If f and g are bijections, then $g(f(x))=(f \circ g)(x)$ is also a bijection
- Prove this at home!
- So, since we know that \mathbb{Z} is countable...
- i.e that there's a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z}...
- If we find a bijection from \mathbb{Z} to $\mathbb{Z}^{\text {even }}$
- We will have a bijection from $\mathbb{N}^{\geq 1}$ to $\mathbb{Z}^{\text {even }}$, and $\mathbb{Z}^{\text {even }}$ is, therefore, countable!

Countability of $\mathbb{Z}^{\text {even }}$

- If f and g are bijections, then $g(f(x))=(f \circ g)(x)$ is also a bijection
- Prove this at home!
- So, since we know that \mathbb{Z} is countable...
- i.e that there's a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z}...
- If we find a bijection from \mathbb{Z} to $\mathbb{Z}^{\text {even }}$
- We will have a bijection from $\mathbb{N}^{\geq 1}$ to $\mathbb{Z}^{\text {even }}$, and $\mathbb{Z}^{\text {even }}$ is, therefore, countable!

$$
\begin{aligned}
& \ldots,-6,-4,-2,0,2,4,6, \ldots \quad f(n)=2 * n \\
& \ldots,-3,-2,-1,0,1,2,3, \ldots
\end{aligned}
$$

Countability of $\mathbb{Z}^{\text {even }}$

- If f and g are bijections, then $g(f(x))=(f \circ g)(x)$ is also a bijection
- Prove this at home!
- So, since we know that \mathbb{Z} is countable...
- i.e that there's a bijection from $\mathbb{N}^{\geq 1}$ to \mathbb{Z}...
- If we find a bijection from \mathbb{Z} to $\mathbb{Z}^{\text {even }}$
- We will have a bijection from $\mathbb{N}^{\geq 1}$ to $\mathbb{Z}^{\text {even }}$, and $\mathbb{Z}^{\text {even }}$ is, therefore, countable!

$$
\begin{aligned}
& \ldots,-6,-4,-2,0,2,4,6, \ldots \quad f(n)=2 * n \\
& \ldots,-3,-2,-1,0,1,2,3, \ldots \quad \text { clearly bijective }
\end{aligned}
$$

Countability of $\mathbb{Q}^{>0}$

- Is $\mathbb{Q}^{>0}$ countable?

Yes
No

Countability of $\mathbb{Q}^{>0}$

- Is $\mathbb{Q}^{>0}$ countable?

Yes

Countability of $\mathbb{Q}^{>0}$

- Is $\mathbb{Q}^{>0}$ countable?

Yes

No

	1	2	3	4	...
1	$1 / 1$	$\rightarrow 1 / 2$	$\pm 1 / 3$	$\rightarrow 1 / 4$	\rightarrow
2	2/1	- $2 / 2$	$2 / 3$	$\rightarrow 2 / 4$	
3	$3 / 1$	- $3 / 2$	$3 / 3$	- 3/4 ${ }^{2}$	\rightarrow
4	$4 / 1$	+ $4 / 2$	- $4 / 3$	$4 / 4$
...	

Countability of $\mathbb{Q}^{>0}$

- Is $\mathbb{Q}^{>0}$ countable?

Yes No

	1	2	3	4	...
1	$1 / 1$	$\rightarrow 1 / 2$	-1/3	$\rightarrow 1 / 4$	\rightarrow
2	2/1	$\rightarrow 2 / 2$	$2 / 3$	$\rightarrow 2 / 4$	
3	$3 / 1$	$3 / 2$	$3 / 3$	- 3/4	,
4	$4 / 1$	$\rightarrow 4 / 2$	- $4 / 3$, $4 / 4$
...	

All strictly positive rationals are counted exactly once (skipping repetitions like $\left.\frac{1}{1}=\frac{2}{2}=\frac{3}{3}=\cdots\right)$,
so this "snaking" is a bijection

Countability of $\mathbb{Q}^{>0}$

- If you don't like the proof involving this "snaking" pattern, ProofWiki has 4 (!) different proofs here:
http://www.homeschoolmath.net/teaching/rational-numberscountable.php
- (1) tries to prove the "snaking" pattern in a way that I don't find very rigorous
- 2, 3, 4 assume other facts that we won't prove today, but are easy to prove
- E.g the cartesian product of countable sets is also countable, or the union of countable sets is also a countable set!

Some Theorems on Countability

- Suppose A is a countable set and $e \notin A$. Is $A \cup\{e\}$ countable?

Unknown to science

Some Theorems on Countability

- Suppose A is a countable set and $e \notin A$. Is $A \cup\{e\}$ countable?

Unknown to science

- Suppose $a_{1}, a_{2}, a_{3}, \ldots$ is an enumeration of A .
- We then define a new enumeration b of $A \cup\{e\}$, like so:

$$
b_{n}= \begin{cases}e, & n=1 \\ a_{n-1}, & n \geq 2\end{cases}
$$

Some Theorems on Countability

- Suppose A is a countable set and $e \notin A$. Is $A \cup\{e\}$ countable?

Unknown to science

- Suppose $a_{1}, a_{2}, a_{3}, \ldots$ is an enumeration of A.
- We then define a new enumeration b of $A \cup\{e\}$, like so:

$$
b_{n}= \begin{cases}e, & n=1 \\ a_{n-1}, & n \geq 2\end{cases}
$$

$$
\begin{aligned}
& \text { Pretty much like in the case of } \\
& \mathbb{N} \text {, we just "move one index }
\end{aligned}
$$ over"!

Some Theorems on Countability

- Suppose A and B are countable sets. Is $A \cup B$ countable?

Unknown to science

Some Theorems on Countability

- Suppose A and B are countable sets. Is $A \cup B$ countable?

Unknown to science

- For simplicity, assume A and B are countably infinite.

Some Theorems on Countability

- Suppose A and B are countable sets. Is $A \cup B$ countable?

Unknown to science

- For simplicity, assume A and B are countably infinite.

$$
\begin{gathered}
1,2,3,4, \ldots \\
a_{1}, b_{1}, a_{2}, b_{2} \ldots
\end{gathered}
$$

$$
f(n)=\left\{\begin{array}{lr}
a_{(n+1)} / 2, & \text { nodd } \\
b_{n} / 2^{\prime}, & n \text { even }
\end{array}\right.
$$

What if A or B (or both) finite?

- Caveat: the previous will not work if A or B end before the other ends.
- Because some a_{i}, b_{i} might not exist.
- We leave it to you to iron out the details of what happens then.

Note: $A \cup B \cup C$ countable

- If A, B, C are countable, so is $A \cup B \cup C$.
- Since A, B are countable, $(A \cup B)=S_{1}$ is countable
- $(A \cup B) \cup C=S_{1} \cup C$. Since S_{1}, C are countable, $S_{1} \cup C=(A \cup B) \cup C$ is countable.

Note: $A \cup B \cup C$ Countable

- If A, B, C are countable, so is $A \cup B \cup C$.
- Since A, B are countable, $(A \cup B)=S_{1}$ is countable
- $(A \cup B) \cup C=S_{1} \cup C$. Since S_{1}, C are countable, $S_{1} \cup C=(A \cup B) \cup C$ is countable.
- Generally,

$$
\begin{aligned}
& A_{1}, A_{2}, A_{3}, \ldots A_{n} \text { countable } \Rightarrow \cup_{i=1}^{n} A_{i} \text { countable } \\
& \text { (Countable union of countable sets is countable) }
\end{aligned}
$$

Note: $A \cup B \cup C$ Countable

- If A, B, C are countable, so is $A \cup B \cup C$.
- Since A, B are countable, $(A \cup B)=S_{1}$ is countable
- $(A \cup B) \cup C=S_{1} \cup C$. Since S_{1}, C are countable, $S_{1} \cup C=(A \cup B) \cup C$ is countable.
- Generally,

$$
A_{1}, A_{2}, A_{3}, \ldots A_{n,} A_{n+1}, \ldots \text { countable } \Rightarrow \cup_{i=1}^{+\infty} A_{i} \text { countable }
$$ (Countable union of countable sets is countable)

Proof on next slide!

Countable Union of Countable Sets Countable

- Here's a proof that uses the snaking patern.
- Suppose $A_{i}=\left\{a_{i j}, j \in \mathbb{N}\right\}$. Then, we can arrange the elements of the $A_{i}{ }^{\prime}$ th set in the $i^{\text {th }}$ row of a 2D matrix:

Countable Union of Countable Sets Countable

- Here's another proof that uses the snaking pattern.
- Suppose $A_{i}=\left\{a_{i j}, j \in \mathbb{N}\right\}$. Then, we can arrange the elements of the $A_{i}{ }^{\prime}$ th set in the $i^{t h}$ row of a 2D matrix:

	$1^{\text {st }}$ element	2 $^{\text {nd }}$ element	$3^{\text {rd }}$ element	$4^{\text {th }}$ element	\ldots
A_{1}	$a_{1_{1}}$	$a_{1_{2}}$	$a_{1_{3}}$	$a_{1_{4}}$	\ldots
A_{2}	$a_{2_{1}}$	$a_{2_{2}}$	$a_{2_{3}}$	$a_{2_{4}}$	\ldots
A_{3}	$a_{3_{1}}$	$a_{3_{2}}$	$a_{3_{3}}$	$a_{3_{4}}$	\ldots
A_{4}	$a_{4_{1}}$	$a_{4_{2}}$	a_{43}	$a_{4_{4}}$	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

Countable Union of Countable Sets Countable

- Here's another proof that uses the snaking pattern.
- Suppose $A_{i}=\left\{a_{i j}, j \in \mathbb{N}\right\}$. Then, we can arrange the elements of the $A_{i}{ }^{\prime}$ th set in the $i^{t h}$ row of a 2D matrix:

	$1^{\text {st }}$ element	$2^{\text {nd }}$ element	$3^{\text {rd }}$ element	$4^{\text {th }}$ element	\ldots
A_{1}	$a_{1_{1}}$				
A_{2}	$a_{2_{1}}$	$a_{1_{2}}$	$a_{1_{3}}$	$a_{1_{4}}$	\ldots
A_{3}	$a_{3_{1}}$	$a_{3_{2}}$	$a_{3_{3}}$	$a_{2_{4}}$	\ldots
A_{4}	$a_{4_{1}}$	$a_{4_{2}}$	a_{43}	$a_{4_{4}}$	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

Some Theorems on Countability

- Suppose A and B are countable sets. Is $A \times B$ countable?

Unknown to science

Some Theorems on Countability

- Suppose A and B are countable sets. Is $A \times B$ countable?

- Proof is exactly the same as the proof that $\mathbb{Q}^{>0}$ is countable!

Some Theorems on Countability

- Suppose A and B are countable sets. Is $A \times B$ countable?

Unknown to science

- Proof is exactly the same as the proof that $\mathbb{Q}^{>0}$ is countable!

	b_{1}	b_{2}	b_{3}	b_{4}	\cdots
a_{1}	$\left(a_{1}, b_{1}\right)$	$\left(a_{1}, b_{2}\right)$	$\left(a_{1}, b_{3}\right)$	$\left(a_{1}, b_{4}\right)$	\cdots
a_{2}	$\left(a_{2}, b_{1}\right)$	$\left(a_{2}, b_{2}\right)$	$\left(a_{2}, b_{3}\right)$	$\left(a_{2}, b_{4}\right)$	\cdots
a_{3}	$\left(a_{3}, b_{1}\right)$	$\left(a_{3}, b_{2}\right)$	$\left(a_{3}, b_{3}\right)$	$\left(a_{3}, b_{4}\right)$	\cdots

Some Theorems on Countability

- Suppose A and B are countable sets. Is $A \times B$ countable?

Unknown to science

- Proof is exactly the same as the proof that $\mathbb{Q}^{>0}$ is countable!

	b_{1}	b_{2}	b_{3}	b_{4}	\cdots
a_{1}	$\left(a_{1}, b_{1}\right)$	$\left(a_{1}, b_{2}\right)$	$\left(a_{1}, b_{3}\right)$	$\left(a_{4} b_{4}\right)$	\cdots
a_{2}	$\left(a_{2}, b_{1}\right)$	$\left(a_{2}, b_{2}\right)$	$\left(a_{2}, b_{3}\right)$	$\left(a_{2}, b_{4}\right)$	\cdots
a_{3}	$\left(a_{3}, b_{1}\right)$	$\left(a_{3}, b_{2}\right)$	$\left(a_{3}, b_{3}\right)$	$\left(a_{3}, b_{4}\right)$	\cdots

Countability of \mathbb{R}

- Is \mathbb{R} countable?

Yes

Unknown to science

Countability of \mathbb{R}

- Is \mathbb{R} countable?

Countability of \mathbb{R}

- Is \mathbb{R} countable?

- Cantor's famous diagonal argument!

Countability of \mathbb{R}

- Is \mathbb{R} countable?

- Cantor's famous diagonal argument!
- The argument actually proves that the interval $[0,1]$ is uncountable, but the result generalizes to the entirety of \mathbb{R}
- Wait a few lectures to see why this is true.

Cantor's Diagonal Argument

- Proof by contradiction: Suppose that $[0,1]$ is countable. Then, there exists some bijection from $\mathbb{N}^{\geq 1}$ to $[0,1]$, i.e the reals can be enumerated in a sequence:

1. 0.28422856233.....
2. 0.28422856232.....
3. 0.28422856231.....
n. 0.28422855001

Cantor's Diagonal Argument

$$
\begin{aligned}
r_{1} & =0.28422856233 \ldots \\
r_{2} & =0.28422856232 \ldots \\
r_{3} & =0.28422856231 \ldots \\
\vdots & =\ldots . ~
\end{aligned}
$$

- Let's create the real number $r=0 . a_{1} a_{2} a_{3} \ldots a_{n} \ldots$ where

$$
a_{i}=\left\{\begin{array}{ccl}
0, & r_{i_{i}}=9 & \text { Note: } r_{i_{i}} \text { is the } i^{\text {th }} \text { digit of } \\
r_{i_{i}}+1, & 0 \leq r_{i_{i}}<9 & \text { the } i^{\text {th }} \text { real. }
\end{array}\right.
$$

Cantor's Diagonal Argument

$$
\begin{aligned}
& r_{1}=0.28422856233 \ldots \\
& r_{2}=0.28422856232 \ldots \\
& r_{3}=0.28422856231 \ldots \\
& \text { : = } \\
& \text { : = } \\
& r_{n}=0.2842285500 \ldots
\end{aligned}
$$

- Let's create the real number $r=0 . a_{1} a_{2} a_{3} \ldots a_{n} \ldots$ where

$$
a_{i}=\left\{\begin{array}{ccl}
0, & r_{i_{i}}=9 & \text { Note: } r_{i_{i}} \text { is the } i^{\text {th }} \text { digit of } \\
r_{i_{i}}+1, & 0 \leq r_{i_{i}}<9 & \text { the } i^{\text {th }} \text { real. }
\end{array}\right.
$$

- In our case, $r=0.395$...

Cantor's Diagonal Argument

$$
\begin{gathered}
r_{1}=0.28422856233 \ldots \\
r_{2}=0.28422856232 \ldots \\
r_{3}=0.28422856231 \ldots \\
\vdots=\ldots \ldots \ldots . ~
\end{gathered}
$$

- Bill claims that $r=0.395 \ldots$ is the $17^{\text {th }}$ real in the list.

Cantor's Diagonal Argument

$$
\begin{aligned}
& r_{1}=0.28422856233 \ldots \\
& r_{2}=0.28422856232 \ldots \\
& r_{3}=0.28422856231 \ldots \\
& \vdots=\ldots . ~
\end{aligned}
$$

- Bill claims that $r=0.395 \ldots$ is the $17^{\text {th }}$ real in the list.
- But this cannot be true, since our real number was constructed such that it differs from the $17^{\text {th }}$ real in the $17^{\text {th }}$ decimal digit!

Cantor's Diagonal Argument

$$
\begin{gathered}
r_{1}=0.28422856233 \ldots \\
r_{2}=0.28422856232 \ldots \\
r_{3}=0.28422856231 \ldots \\
\vdots=\ldots . ~
\end{gathered}
$$

- Bill claims that $r=0.395 \ldots$ is the $17^{\text {th }}$ real in the list.
- But this cannot be true, since our real number was constructed such that it differs from the $17^{\text {th }}$ real in the $17^{\text {th }}$ decimal digit!
- Generally speaking, r will differ from the $i^{\text {th }}$ real in the $i^{\text {th }}$ digit!
- So we can't find an $k \in \mathbb{N}$ such that $0.395 \ldots=r_{k}$.
- Contradiction, since we assumed we can enumerate all reals in $[0,1]$.

|s $|\mathbb{N}|<|\mathbb{R}| ?$

- Of course!
- But how can we say this rigorously?
- Defn: $|A| \leq|B|$ if there is an injection from A into B
- Defn: $|A|<|B|$ if there is an injection from A into B but there is no surjection from A into B !
- Advice: Replace injection with "1-1 mapping" and surjection with "onto"

More Theorems on Countability

- Is the set of all functions $f: \mathbb{N} \mapsto \mathbb{N}$ countable?

Unknown
to science

More Theorems on Countability

- Is the set of all functions $f: \mathbb{N} \mapsto \mathbb{N}$ countable?

- Cantorian proof on next slide

$\{f \mid f: \mathbb{N} \mapsto \mathbb{N}\}$ Uncountable

- Assume that the set is countable. Then, all functions from \mathbb{N} to \mathbb{N} can be enumerated:

$$
f_{1}, f_{2}, f_{3}, \ldots
$$

- Construct the function $g(x)=f_{x}(x)+1 . g$, when given input i, is different from f_{i} when also given input i. So there is no $k \in \mathbb{N}$ such that $f_{k}=g$. Contradiction. Therefore, $\{f \mid f: \mathbb{N} \mapsto \mathbb{N}\}$ uncountable.

More Theorems on Countability

- Is $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ countable?

No

Unknown to science

More Theorems on Countability

- Is $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ countable?

- Proof: $f: \mathbb{R} \mapsto \mathbb{R} \times \mathbb{R}$ such that $f(x)=(x, 1)$ is an injection (1-1)
- Hence, $\mathbb{R} \times \mathbb{R}$ is at least as big as \mathbb{R}, and \mathbb{R} is uncountable.
- So, $\mathbb{R} \times \mathbb{R}$ is uncountable.

More Theorems on Countability

- Is \mathbb{C} (set of complex numbers) countable?

Unknown to science

More Theorems on Countability

- Is \mathbb{C} (set of complex numbers) countable?

Unknown to science

- Remember: complex numbers defined as $a+b \cdot i$ for $a, b \in \mathbb{R}$.
- $f: \mathbb{R} \times \mathbb{R} \mapsto \mathbb{C}$ such that $f((a, b))=a+b \cdot i$ is a bijection from $\mathbb{R} \times \mathbb{R}$ to \mathbb{C}
- But we know that $\mathbb{R} \times \mathbb{R}$ is uncountable. Therefore, \mathbb{C} is uncountable.

More Theorems on Countability

- Let A be any uncountable set. Is there any $B \subseteq A$ that is countable?

Unknown to science

More Theorems on Countability

- Let A be any uncountable set. Is there any $B \subseteq A$ that is countable?

Unknown to science

- Consider: $[0,1]$ and $\left\{\left.\frac{1}{x} \right\rvert\, x \in \mathbb{N}^{\geq 1}\right\} \subseteq[0,1]$

More Theorems on Countability

- Let A be any uncountable set. Is there any $B \subseteq A$ that is countable?

Unknown to science

- Consider: [0,1] and $\left\{\begin{array}{c}\left.\left.\frac{1}{x} \right\rvert\, x \in \mathbb{N} \geq 1\right\} \subseteq[0,1] \\ \begin{array}{l}\text { All these are } \\ \text { positive rationals! }\end{array} \\ \hline\end{array}\right.$

More Theorems on Countability

- Let $\{0,1\}^{\infty}$ be the set of infinite sequences consisting only of 0 s and 1s
- Is it countable?

Unknown to science

More Theorems on Countability

- Let $\{0,1\}^{\infty}$ be the set of infinite sequences consisting only of 0 s and 1s
- Is it countable?

Unknown to science

- Cantor-like proof in next slide!

The Set of Infinite Bit-strings is Uncountable

- Assume that the set is countable, then the strings can be enumerated:

1: 000111010101010...
2: 0101011110001101...
n: 010101000011100...

- Construct bit-string s which differs from the $\mathrm{i}^{\text {th }}$ string in the list in the $\mathrm{i}^{\text {th }}$ digit.
- Since this string is not in the list, we can't enumerate them all. Contradiction.

More Theorems on Countability

- Let $A_{1}, A_{2}, A_{3} \ldots$ be an infinite sequence of countable sets.
- Is $A_{1} \times A_{2} \times A_{3} \times \cdots$ countable?

Unknown to science

More Theorems on Countability

- Let $A_{1}, A_{2}, A_{3} \ldots$ be an infinite sequence of countable sets.
- Is $A_{1} \times A_{2} \times A_{3} \times \cdots$ countable?

- Cantor-like proof in next slide!

Set of Infinite Cartesian Product of Countable Sets is Uncountable

- Notation: $a_{i}=\left\{a_{i_{1}}, a_{i_{2}}, a_{i_{3}}, \ldots\right\}$
- Suppose that the set is countable. Then, enumeration:

$$
\begin{aligned}
& \left(a_{1_{1}}, a_{1_{2}}, a_{1_{3}}, a_{1_{4}}, \ldots\right) \\
& \left(a_{2_{1}}, a_{2}, a_{2}, a_{2_{4}}, \ldots\right) \\
& \left(a_{3_{1}}, a_{3_{2}}, a_{3_{3}}, a_{3_{4}}, \ldots\right)
\end{aligned}
$$

Set of Infinite Cartesian Product of Countable Sets is Uncountable

- Notation: $a_{i}=\left\{a_{i_{1}}, a_{i_{2}}, a_{i_{3}}, \ldots\right\}$
- Suppose that the set is countable. Then, enumeration:

$$
\begin{aligned}
& \left(a_{1_{1}}, a_{1_{2}}, a_{1_{3}}, a_{1_{4}}, \ldots\right) \\
& \left(a_{2_{1}}, a_{2_{2}}, a_{2_{3}}, a_{2_{4}}, \ldots\right) \\
& \left(a_{3_{1}}, a_{3_{2}}, a_{3_{3}}, a_{3_{4}}, \ldots\right)
\end{aligned}
$$

Construct infinite tuple $\left(a_{1_{x_{1}}}, a_{2_{x_{2}}}, a_{3_{x_{2}}}, \ldots\right)$ such that x_{i} is an element of A_{i} different from the element used in the $i^{\text {th }}$ position of the $i^{\text {th }}$ tuple!

- This tuple cannot be in the list, etc etc etc

More Theorems on Countability

- Is $\mathcal{P}(\mathbb{N})$ (the powerset of the naturals) countable?

Unknown to science

More Theorems on Countability

- Is $\mathcal{P}(\mathbb{N})$ (the powerset of the naturals) countable?

- Cantor-like proof in next slide!

Powerset of Naturals Uncountable

- Assume that $\mathcal{P}(\mathbb{N})$ is countable. This means that we can arrange all of the subsets of \mathbb{N} in a sequence: S_{1}, S_{2}, \ldots
- Let $A=\left\{i \in \mathbb{N} \mid i \notin S_{i}\right\} \subseteq \mathbb{N}$
- By construction, A cannot be in the list of subsets.
- Contradiction. So $\mathcal{P}(\mathbb{N})$ uncountable.

Infinite Number of Infinities

- We just showed that $\mathbb{N}<\mathcal{P}(\mathbb{N})$
- Similar proof: for any set $A, A<\mathcal{P}(A)$

$$
\mathbb{N}<\mathcal{P}(\mathbb{N})<\mathcal{P}(\mathcal{P}(\mathbb{N}))<\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N})))<\cdots
$$

Infinite Number of Infinities

- We just showed that $\mathbb{N}<\mathcal{P}(\mathbb{N})$
- Similar proof: for any set $A, A<\mathcal{P}(A)$

$$
\mathbb{N}<\mathcal{P}(\mathbb{N})<\mathcal{P}(\mathcal{P}(\mathbb{N}))<\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N})))<\cdots
$$

- How many levels of infinity are there?

Uncountably
 many (\mathbb{R})

Infinite Number of Infinities

- We just showed that $\mathbb{N}<\mathcal{P}(\mathbb{N})$
- Similar proof: for any set $A, A<\mathcal{P}(A)$

$$
\mathbb{N}<\mathcal{P}(\mathbb{N})<\mathcal{P}(\mathcal{P}(\mathbb{N}))<\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N})))<\cdots
$$

- How many levels of infinity are there?

STOP

RECORDING

