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Motivation

• Two toddlers want to compare their marbles to see who has more.
• They cannot count yet.
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has more?
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Motivation
• They line them up and compare!

• Intuition for us: If we can find such a mapping between two (infinite) sets, we will say 
that they have the same (infinite) cardinality (or size).



Motivation

• This matching of marbles 
• Every two different marbles on left go to two different marbles on right
• Every marble on right is matched by some marble on the left



Motivation

• This matching of marbles 
• Every two different marbles on left go to two different marbles on right
• Every marble on right is matched by some marble on the left

• By Joav, this is a bijection!
• WE DEFINE TWO SETS TO BE THE SAME SIZE IF THERE IS A BIJECTION 

BETWEEN THEM.
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• Are the following functions bijections?

1. 𝑓𝑓 𝑥𝑥 = 𝑥𝑥 No
2. 𝑓𝑓 𝑥𝑥 = 𝑎𝑎 ⋅ 𝑥𝑥 + 𝑏𝑏, 𝑏𝑏 ∈ ℝ,𝑎𝑎 ∈ ℝ≠0Yes
3. 𝑔𝑔 𝑥𝑥 = 𝑎𝑎 ⋅ 𝑥𝑥2, 𝑎𝑎 > 0 No
4. ℎ 𝑛𝑛 = 4𝑛𝑛 − 1,𝒏𝒏 ∈ ℤ No

Yes No

Non-surjective! Set ℎ 𝑛𝑛 = 𝑦𝑦 and 
solve for 𝑛𝑛:

4𝑛𝑛 – 1 = 𝑦𝑦 ⇒ 𝑛𝑛 =
𝑦𝑦 + 1

4

There are infinitely many choices of 
𝑦𝑦 for which 𝑛𝑛 ∉ ℤ!

All domains and 
codomains ℝ, unless 
otherwise stated
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Refresher on Bijections

• Are the following functions bijections?

1. 𝑓𝑓 𝑥𝑥 = 𝑥𝑥 No
2. 𝑓𝑓 𝑥𝑥 = 𝑎𝑎 ⋅ 𝑥𝑥 + 𝑏𝑏, 𝑏𝑏 ∈ ℝ,𝑎𝑎 ∈ ℝ≠0Yes
3. 𝑔𝑔 𝑥𝑥 = 𝑎𝑎 ⋅ 𝑥𝑥2, 𝑎𝑎 > 0 No
4. ℎ 𝑛𝑛 = 4𝑛𝑛 − 1,𝑛𝑛 ∈ ℤ No
5. ℎ 𝑥𝑥 = 4𝑥𝑥 − 1 Yes

Yes No

Surjective and injective! Surjective, 
since, if we set ℎ 𝑛𝑛 = 𝑦𝑦 and solve 
for 𝑛𝑛:

4𝑛𝑛 – 1 = 𝑦𝑦 ⇒ 𝑛𝑛 =
𝑦𝑦 + 1

4

For every real 𝑦𝑦, there’s always a 
real solution 𝑛𝑛. Injective, since it’s of 
the form of (2) with 𝑎𝑎 ≠ 0.

All domains and 
codomains ℝ, unless 
otherwise stated



Countable Sets

• Definition: A set 𝑆𝑆 is said to be countable if there exists a 
bijection from a subset of ℕ≥𝟏𝟏 to 𝑆𝑆.

• Sometimes, this bijection is called an enumeration.
• Alternatively, yet still rigorously: If we can form some sequence 

out of its elements (or, if we can enumerate its elements)
• Equivalently, blending in Physics: If every one of its elements can 

be reached in finite time. 
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Finite Sets and Countability

• Every finite set is countable. 
• Why?
• Suppose that S is a finite set. Since it’s finite, it contains 𝑛𝑛

elements, for 𝑛𝑛 ∈ ℕ. This means that S can be enumerated, like 
so:

𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, … , 𝑠𝑠𝑛𝑛}

But this means that there exists a bijection from {1, 2, … ,𝑛𝑛 } to 𝑆𝑆, 
where {1, 2, … ,𝑛𝑛 } ⊆ ℕ! 



Infinite Sets and Countability

• Since all finite sets are countable, might as well limit ourselves to the 
exploration of infinite sets that might also be countable.

• We call those “countably infinite” sets.

• Let such a set be called 𝑆𝑆. Then, to prove that it’s countable, we need 
to find some bijection 𝑏𝑏 from ℕ≥1 to 𝑆𝑆.
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Infinite Sets and Countability

• Since all finite sets are countable, might as well limit ourselves to the 
exploration of infinite sets that might also be countable.

• We call those “countably infinite” sets.

• Let such a set be called 𝑆𝑆. Then, to prove that it’s countable, we need 
to find some bijection 𝑏𝑏 from ℕ≥1 to 𝑆𝑆.

• Is 𝑏𝑏:ℕ≥1 ↦ ℕ≥1 such that
𝑏𝑏 𝑛𝑛 = 𝑛𝑛

a bijection?

Yes No

Conclusion: ℕ≥1

is countably 
infinite



Countability of ℕ

• Is ℕ countable? (recall, 0 ∈ ℕ)

Yes No



Countability of ℕ
• Is ℕ countable? (recall, 0 ∈ ℕ)

• Through the bijection 𝑓𝑓 𝑛𝑛 = 𝑛𝑛 − 1, like so:

ℕ≥1: 1, 2, 3, 4, , … , 56, …

ℕ : 0, 1, 2, 3, … , 55, …

Yes No

𝑓𝑓



Countability of Other A ⊆ ℕ

• Is the set 𝑥𝑥 𝑥𝑥 ∈ ℕ ∧ (𝑥𝑥 ≥ 17)} countable?

Yes No



Countability of Other A ⊆ ℕ
• Is the set 𝑥𝑥 𝑥𝑥 ∈ ℕ ∧ (𝑥𝑥 ≥ 17)} countable?

• Through the bijection 𝑓𝑓 𝑛𝑛 = 𝑛𝑛 + 16, like so:

ℕ≥1: 1, 2, 3, 4, … , 56, …

ℕ≥17: 17, 18, 19, 20, … , 72 …

Yes No

𝑓𝑓



Countability of Other A ⊆ ℕ

• Is the set 𝑥𝑥 𝑥𝑥 ∈ ℕ ∧ (𝑥𝑥 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 2)} countable?

Yes No



Countability of Other A ⊆ ℕ

• Is the set 𝑥𝑥 𝑥𝑥 ∈ ℕ ∧ (𝑥𝑥 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 2)} countable?

ℕ≥1: 1, 2, 3, 4, …

ℕ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 0, 2, 4, 6, …

Yes No



Countability of Other A ⊆ ℕ

• Is the set 𝑥𝑥 𝑥𝑥 ∈ ℕ ∧ (𝑥𝑥 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 2)} countable?

ℕ≥1: 1, 2, 3, 4, …

ℕ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛: 0, 2, 4, 6, …

Yes No

𝑓𝑓 𝑛𝑛 = 2(𝑛𝑛 − 1)

𝑓𝑓



Countability of ℤ

• Is ℤ countable?

Yes No
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Countability of ℤ

• Is ℤ countable?

0, 1,−1, 2,−2, 3,−3, …

• 𝑓𝑓 is…
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Countability of ℤ

• Is ℤ countable?
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• 𝑓𝑓 is…
• onto, since every integer is mapped to
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Countability of ℤ

• Is ℤ countable?

0, 1,−1, 2,−2, 3,−3, …

• 𝑓𝑓 is…
• onto, since every integer is mapped to
• 1-1, since no two naturals map to the same integer
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Countability of ℤ

• Is ℤ countable?

0, 1,−1, 2,−2, 3,−3, …

• 𝑓𝑓 is…
• onto, since every integer is mapped to
• 1-1, since no two naturals map to the same integer
• So it’s a bijection, and ℤ is countable!  

Yes No

1 2 4 63 5 7

𝑓𝑓:ℕ ↦ ℤ,𝑓𝑓 𝑛𝑛 =

𝑛𝑛
2
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Countability of ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛

• Is ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 countable?

Yes No



Countability of ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛

• Is ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 countable?

Yes No

0, 2,−2, 4,−4, 6,−6 …
1 2 43 5 76



Countability of ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛

• Is ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 countable?

Yes No

𝑓𝑓 𝑛𝑛 = �
𝑛𝑛 = 1

𝑛𝑛, 𝑛𝑛 = 2, 4, 6, …
−𝑛𝑛 + 1, 𝑛𝑛 = 3, 5, 7, …

0, 2,−2, 4,−4, 6,−6 …
1 2 43 5 76

0,



Countability of ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛

• Is ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 countable?

Yes No

Both onto and 1-1

0, 2,−2, 4,−4, 6,−6 …
1 2 43 5 76

𝑓𝑓 𝑛𝑛 = �
𝑛𝑛 = 1

𝑛𝑛, 𝑛𝑛 = 2, 4, 6, …
−𝑛𝑛 + 1, 𝑛𝑛 = 3, 5, 7, …

0,



Countability of ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛

• If 𝑓𝑓 and 𝑔𝑔 are bijections, then 𝑔𝑔 𝑓𝑓 𝑥𝑥 = (𝑓𝑓 ∘ 𝑔𝑔)(𝑥𝑥) is also a 
bijection
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• Prove this at home!
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Countability of ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛

• If 𝑓𝑓 and 𝑔𝑔 are bijections, then 𝑔𝑔 𝑓𝑓 𝑥𝑥 = (𝑓𝑓 ∘ 𝑔𝑔)(𝑥𝑥) is also a 
bijection

• Prove this at home!

• So, since we know that ℤ is countable…
• i.e that there’s a bijection from ℕ≥1 to ℤ…

• If we find a bijection from ℤ to ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 …



• If 𝑓𝑓 and 𝑔𝑔 are bijections, then 𝑔𝑔 𝑓𝑓 𝑥𝑥 = (𝑓𝑓 ∘ 𝑔𝑔)(𝑥𝑥) is also a 
bijection

• Prove this at home!

• So, since we know that ℤ is countable…
• i.e that there’s a bijection from ℕ≥1 to ℤ…

• If we find a bijection from ℤ to ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 …
• We will have a bijection from ℕ≥1 to ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 , and ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 is, therefore, 

countable!

Countability of ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛



Countability of ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛

• If 𝑓𝑓 and 𝑔𝑔 are bijections, then 𝑔𝑔 𝑓𝑓 𝑥𝑥 = (𝑓𝑓 ∘ 𝑔𝑔)(𝑥𝑥) is also a 
bijection

• Prove this at home!

• So, since we know that ℤ is countable…
• i.e that there’s a bijection from ℕ≥1 to ℤ…

• If we find a bijection from ℤ to ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 …
• We will have a bijection from ℕ≥1 to ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 , and ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 is, therefore, 

countable! 

… ,−6,−4 ,−2, 0, 2, 4, 6, …
… ,−3,−2 ,−1, 0, 1, 2, 3, …

𝑓𝑓 𝑛𝑛 = 2 ∗ 𝑛𝑛



Countability of ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛

• If 𝑓𝑓 and 𝑔𝑔 are bijections, then 𝑔𝑔 𝑓𝑓 𝑥𝑥 = (𝑓𝑓 ∘ 𝑔𝑔)(𝑥𝑥) is also a 
bijection

• Prove this at home!

• So, since we know that ℤ is countable…
• i.e that there’s a bijection from ℕ≥1 to ℤ…

• If we find a bijection from ℤ to ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 …
• We will have a bijection from ℕ≥1 to ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 , and ℤ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 is, therefore, 

countable! 

… ,−6,−4 ,−2, 0, 2, 4, 6, …
… ,−3,−2 ,−1, 0, 1, 2, 3, …

𝑓𝑓 𝑛𝑛 = 2 ∗ 𝑛𝑛
clearly bijective



Countability of ℚ>0

• Is ℚ>0 countable?

Yes No



Countability of ℚ>0

• Is ℚ>0 countable?

Yes No



Countability of ℚ>0

• Is ℚ>0 countable?

Yes No

1 2 3 4 ...

1 �1
1 �1

2 �1
3 �1

4 …

2 �2
1 �2

2 �2
3 �2

4 …

3 �3
1 �3

2 �3
3 �3

4 ….

4 �4
1 �4

2 �4
3 �4

4 ….

… … … …. …. ….



Countability of ℚ>0

• Is ℚ>0 countable?

Yes No

1 2 3 4 ...

1 �1
1 �1

2 �1
3 �1

4 …

2 �2
1 �2

2 �2
3 �2

4 …

3 �3
1 �3

2 �3
3 �3

4 ….

4 �4
1 �4

2 �4
3 �4

4 ….

… … … …. …. ….

All strictly 
positive 
rationals are 
counted exactly 
once (skipping 
repetitions like
1
1

= 2
2

= 3
3

= ⋯), 
so this “snaking” 
is a bijection



Countability of ℚ>0

• If you don’t like the proof involving this ”snaking” pattern, ProofWiki
has 4 (!)  different proofs here: 
http://www.homeschoolmath.net/teaching/rational-numbers-
countable.php

• (1) tries to prove the “snaking” pattern in a way that I don’t find very rigorous
• 2, 3, 4 assume other facts that we won’t prove today, but are easy to prove

• E.g the cartesian product of countable sets is also countable, or the union of countable 
sets is also a countable set!

http://www.homeschoolmath.net/teaching/rational-numbers-countable.php


Some Theorems on Countability

• Suppose 𝐴𝐴 is a countable set and 𝑒𝑒 ∉ 𝐴𝐴. Is 𝐴𝐴 ∪ {𝑒𝑒} countable?

Yes No Unknown 
to science



Some Theorems on Countability

• Suppose 𝐴𝐴 is a countable set and 𝑒𝑒 ∉ 𝐴𝐴. Is 𝐴𝐴 ∪ {𝑒𝑒} countable?

• Suppose 𝑎𝑎1, 𝑎𝑎2,𝑎𝑎3,… is an enumeration of A.
• We then define a new enumeration 𝑏𝑏 of 𝐴𝐴 ∪ {𝑒𝑒}, like so:

𝑏𝑏𝑛𝑛 = �𝑒𝑒, 𝑛𝑛 = 1
𝑎𝑎𝑛𝑛−1, 𝑛𝑛 ≥ 2

Yes No Unknown 
to science



Some Theorems on Countability

• Suppose 𝐴𝐴 is a countable set and 𝑒𝑒 ∉ 𝐴𝐴. Is 𝐴𝐴 ∪ {𝑒𝑒} countable?

• Suppose 𝑎𝑎1, 𝑎𝑎2,𝑎𝑎3,… is an enumeration of A.
• We then define a new enumeration 𝑏𝑏 of 𝐴𝐴 ∪ {𝑒𝑒}, like so:

𝑏𝑏𝑛𝑛 = �𝑒𝑒, 𝑛𝑛 = 1
𝑎𝑎𝑛𝑛−1, 𝑛𝑛 ≥ 2

Yes No Unknown 
to science

Pretty much like in the case of 
ℕ, we just “move one index 
over”!



Some Theorems on Countability

• Suppose 𝐴𝐴 and 𝐵𝐵 are countable sets. Is 𝐴𝐴 ∪ 𝐵𝐵 countable?

Yes No Unknown 
to science



Some Theorems on Countability

• Suppose 𝐴𝐴 and 𝐵𝐵 are countable sets. Is 𝐴𝐴 ∪ 𝐵𝐵 countable?

• For simplicity, assume 𝐴𝐴 and 𝐵𝐵 are countably infinite.

1,  2,   3,  4, ….

𝑎𝑎1, 𝑏𝑏1, 𝑎𝑎2, 𝑏𝑏2…

Yes No Unknown 
to science

𝑓𝑓



Some Theorems on Countability

• Suppose 𝐴𝐴 and 𝐵𝐵 are countable sets. Is 𝐴𝐴 ∪ 𝐵𝐵 countable?

• For simplicity, assume 𝐴𝐴 and 𝐵𝐵 are countably infinite.

1,  2,   3,  4, ….

𝑎𝑎1, 𝑏𝑏1, 𝑎𝑎2, 𝑏𝑏2…

Yes No Unknown 
to science

𝑓𝑓 𝑓𝑓 𝑛𝑛 = �
𝑎𝑎 �(𝑛𝑛+1)

2, 𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜

𝑏𝑏 �𝑛𝑛 2
, 𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛



What if A or B (or both) finite?

• Caveat: the previous will not work if A or B end before the other ends.
• Because some 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 might not exist.

• We leave it to you to iron out the details of what happens then.



Note: 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 countable

• If 𝐴𝐴,𝐵𝐵,𝐶𝐶 are countable, so is 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶.
• Since 𝐴𝐴,𝐵𝐵 are countable, 𝐴𝐴 ∪ 𝐵𝐵 = 𝑆𝑆1 is countable
• 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 = 𝑆𝑆1 ∪ 𝐶𝐶. Since 𝑆𝑆1,𝐶𝐶 are countable, 
𝑆𝑆1 ∪ 𝐶𝐶 = 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 is countable.



Note: 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 Countable

• If 𝐴𝐴,𝐵𝐵,𝐶𝐶 are countable, so is 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶.
• Since 𝐴𝐴,𝐵𝐵 are countable, 𝐴𝐴 ∪ 𝐵𝐵 = 𝑆𝑆1 is countable
• 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 = 𝑆𝑆1 ∪ 𝐶𝐶. Since 𝑆𝑆1,𝐶𝐶 are countable, 
𝑆𝑆1 ∪ 𝐶𝐶 = 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 is countable.

• Generally,
𝐴𝐴1,𝐴𝐴2,𝐴𝐴3, …𝐴𝐴𝑛𝑛 countable ⇒ ⋃𝑖𝑖=1

𝑛𝑛 𝐴𝐴𝑖𝑖 countable
(Countable union of countable sets is countable)



Note: 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 Countable

• If 𝐴𝐴,𝐵𝐵,𝐶𝐶 are countable, so is 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶.
• Since 𝐴𝐴,𝐵𝐵 are countable, 𝐴𝐴 ∪ 𝐵𝐵 = 𝑆𝑆1 is countable
• 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 = 𝑆𝑆1 ∪ 𝐶𝐶. Since 𝑆𝑆1,𝐶𝐶 are countable, 
𝑆𝑆1 ∪ 𝐶𝐶 = 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 is countable.

• Generally,
𝐴𝐴1,𝐴𝐴2,𝐴𝐴3, …𝐴𝐴𝑛𝑛,𝐴𝐴𝑛𝑛+1, … countable ⇒ ⋃𝑖𝑖=1

+∞ 𝐴𝐴𝑖𝑖 countable
(Countable union of countable sets is countable)

Proof on next slide!



Countable Union of Countable Sets Countable

• Here’s a proof that uses the snaking patern.
• Suppose 𝐴𝐴𝑖𝑖 = {𝑎𝑎𝑖𝑖𝑗𝑗 , 𝑗𝑗 ∈ ℕ}. Then, we can arrange the elements of the 
𝐴𝐴𝑖𝑖’th set in the 𝑖𝑖𝑡𝑡𝑡 row of a 2D matrix:



Countable Union of Countable Sets Countable

• Here’s another proof that uses the snaking pattern.
• Suppose 𝐴𝐴𝑖𝑖 = {𝑎𝑎𝑖𝑖𝑗𝑗 , 𝑗𝑗 ∈ ℕ}. Then, we can arrange the elements of the 
𝐴𝐴𝑖𝑖’th set in the 𝑖𝑖𝑡𝑡𝑡 row of a 2D matrix:

1st element 2nd element 3rd element 4th element …
𝐴𝐴1 𝑎𝑎11 𝑎𝑎12 𝑎𝑎13 𝑎𝑎14 …

𝐴𝐴2 𝑎𝑎21 𝑎𝑎22 𝑎𝑎23 𝑎𝑎24 …

𝐴𝐴3 𝑎𝑎31 𝑎𝑎32 𝑎𝑎33 𝑎𝑎34 …

𝐴𝐴4 𝑎𝑎41 𝑎𝑎42 𝑎𝑎43 𝑎𝑎44 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋱



Countable Union of Countable Sets Countable

• Here’s another proof that uses the snaking pattern.
• Suppose 𝐴𝐴𝑖𝑖 = {𝑎𝑎𝑖𝑖𝑗𝑗 , 𝑗𝑗 ∈ ℕ}. Then, we can arrange the elements of the 
𝐴𝐴𝑖𝑖’th set in the 𝑖𝑖𝑡𝑡𝑡 row of a 2D matrix:

1st element 2nd element 3rd element 4th element …
𝐴𝐴1 𝑎𝑎11 𝑎𝑎12 𝑎𝑎13 𝑎𝑎14 …

𝐴𝐴2 𝑎𝑎21 𝑎𝑎22 𝑎𝑎23 𝑎𝑎24 …

𝐴𝐴3 𝑎𝑎31 𝑎𝑎32 𝑎𝑎33 𝑎𝑎34 …

𝐴𝐴4 𝑎𝑎41 𝑎𝑎42 𝑎𝑎43 𝑎𝑎44 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ Snake ‘em!



Some Theorems on Countability

• Suppose 𝐴𝐴 and 𝐵𝐵 are countable sets. Is 𝐴𝐴 × 𝐵𝐵 countable?

Yes No Unknown 
to science



Some Theorems on Countability

• Suppose 𝐴𝐴 and 𝐵𝐵 are countable sets. Is 𝐴𝐴 × 𝐵𝐵 countable?

• Proof is exactly the same as the proof that ℚ>0 is countable!

Yes No Unknown 
to science



Some Theorems on Countability

• Suppose 𝐴𝐴 and 𝐵𝐵 are countable sets. Is 𝐴𝐴 × 𝐵𝐵 countable?

• Proof is exactly the same as the proof that ℚ>0 is countable!

Yes No Unknown 
to science

𝒃𝒃𝟏𝟏 𝒃𝒃𝟐𝟐 𝒃𝒃𝟑𝟑 𝒃𝒃𝟒𝟒 ...

𝑎𝑎1 (𝑎𝑎1, 𝑏𝑏1) (𝑎𝑎1, 𝑏𝑏2) (𝑎𝑎1, 𝑏𝑏3) (𝑎𝑎1, 𝑏𝑏4) …

𝑎𝑎2 (𝑎𝑎2, 𝑏𝑏1) (𝑎𝑎2, 𝑏𝑏2) (𝑎𝑎2, 𝑏𝑏3) (𝑎𝑎2, 𝑏𝑏4) …

𝑎𝑎3 (𝑎𝑎3, 𝑏𝑏1) (𝑎𝑎3, 𝑏𝑏2) (𝑎𝑎3, 𝑏𝑏3) (𝑎𝑎3, 𝑏𝑏4) ….



Some Theorems on Countability

• Suppose 𝐴𝐴 and 𝐵𝐵 are countable sets. Is 𝐴𝐴 × 𝐵𝐵 countable?

• Proof is exactly the same as the proof that ℚ>0 is countable!

Yes No Unknown 
to science

𝒃𝒃𝟏𝟏 𝒃𝒃𝟐𝟐 𝒃𝒃𝟑𝟑 𝒃𝒃𝟒𝟒 ...

𝑎𝑎1 (𝑎𝑎1, 𝑏𝑏1) (𝑎𝑎1, 𝑏𝑏2) (𝑎𝑎1, 𝑏𝑏3) (𝑎𝑎1, 𝑏𝑏4) …

𝑎𝑎2 (𝑎𝑎2, 𝑏𝑏1) (𝑎𝑎2, 𝑏𝑏2) (𝑎𝑎2, 𝑏𝑏3) (𝑎𝑎2, 𝑏𝑏4) …

𝑎𝑎3 (𝑎𝑎3, 𝑏𝑏1) (𝑎𝑎3, 𝑏𝑏2) (𝑎𝑎3, 𝑏𝑏3) (𝑎𝑎3, 𝑏𝑏4) ….



Countability of ℝ

• Is ℝ countable?

Yes No Unknown 
to science



Countability of ℝ

• Is ℝ countable?

Yes No Unknown 
to science



Unknown 
to science

Countability of ℝ

• Is ℝ countable?

• Cantor’s famous diagonal argument!

Yes No



Unknown 
to science

Countability of ℝ

• Is ℝ countable?

• Cantor’s famous diagonal argument!
• The argument actually proves that the interval [0,1] is uncountable, 

but the result generalizes to the entirety of ℝ
• Wait a few lectures to see why this is true.

Yes No



Cantor’s Diagonal Argument

• Proof by contradiction: Suppose that [0, 1] is countable. Then, there 
exists some bijection from ℕ≥1 to [0, 1], i.e the reals can be 
enumerated in a sequence:

1. 0.28422856233…..

2. 0.28422856232…..

3. 0.28422856231…..

………………….………..

………………….………..
𝑛𝑛.  0.28422855001……



Cantor’s Diagonal Argument

𝑟𝑟1 = 0.28422856233 …
𝑟𝑟2 = 0.28422856232 …
𝑟𝑟3 = 0.28422856231 …
⋮ =     ………………….………..

⋮ =     ………………….………..
𝑟𝑟𝑛𝑛 = 0.2842285500 …

• Let’s create the real number 𝑟𝑟 = 0.𝑎𝑎1𝑎𝑎2𝑎𝑎3 …𝑎𝑎𝑛𝑛 … where 

𝑎𝑎𝑖𝑖 = �
0, 𝑟𝑟𝑖𝑖𝑖𝑖 = 9

𝑟𝑟𝑖𝑖𝑖𝑖 + 1, 0 ≤ 𝑟𝑟𝑖𝑖𝑖𝑖 < 9
Note: 𝑟𝑟𝑖𝑖𝑖𝑖 is the 𝑖𝑖𝑡𝑡𝑡 digit of 
the 𝑖𝑖𝑡𝑡𝑡 real.



Cantor’s Diagonal Argument

𝑟𝑟1 = 0.𝟐𝟐8422856233 …
𝑟𝑟2 = 0.2𝟖𝟖422856232 …
𝑟𝑟3 = 0.28𝟒𝟒22856231 …
⋮ =     ………………….………..

⋮ =     ………………….………..
𝑟𝑟𝑛𝑛 = 0.2842285500 …

• Let’s create the real number 𝑟𝑟 = 0.𝑎𝑎1𝑎𝑎2𝑎𝑎3 …𝑎𝑎𝑛𝑛 … where 

𝑎𝑎𝑖𝑖 = �
0, 𝑟𝑟𝑖𝑖𝑖𝑖 = 9

𝑟𝑟𝑖𝑖𝑖𝑖 + 1, 0 ≤ 𝑟𝑟𝑖𝑖𝑖𝑖 < 9

• In our case, 𝑟𝑟 = 0.395 …

Note: 𝑟𝑟𝑖𝑖𝑖𝑖 is the 𝑖𝑖𝑡𝑡𝑡 digit of 
the 𝑖𝑖𝑡𝑡𝑡 real.



Cantor’s Diagonal Argument

𝑟𝑟1 = 0.𝟐𝟐8422856233 …
𝑟𝑟2 = 0.2𝟖𝟖422856232 …
𝑟𝑟3 = 0.28𝟒𝟒22856231 …
⋮ =     ………………….………..

⋮ =     ………………….………..
𝑟𝑟𝑛𝑛 = 0.2842285500 …

• Bill claims that 𝑟𝑟 = 0.395 … is the 17th real in the list.



Cantor’s Diagonal Argument

𝑟𝑟1 = 0.𝟐𝟐8422856233 …
𝑟𝑟2 = 0.2𝟖𝟖422856232 …
𝑟𝑟3 = 0.28𝟒𝟒22856231 …
⋮ =     ………………….………..

⋮ =     ………………….………..
𝑟𝑟𝑛𝑛 = 0.2842285500 …

• Bill claims that 𝑟𝑟 = 0.395 … is the 17th real in the list.
• But this cannot be true, since our real number was constructed such 

that it differs from the 17th real in the 17th decimal digit!



Cantor’s Diagonal Argument

𝑟𝑟1 = 0.𝟐𝟐8422856233 …
𝑟𝑟2 = 0.2𝟖𝟖422856232 …
𝑟𝑟3 = 0.28𝟒𝟒22856231 …
⋮ =     ………………….………..

⋮ =     ………………….………..
𝑟𝑟𝑛𝑛 = 0.2842285500 …

• Bill claims that 𝑟𝑟 = 0.395 … is the 17th real in the list.
• But this cannot be true, since our real number was constructed such 

that it differs from the 17th real in the 17th decimal digit!
• Generally speaking, 𝑟𝑟 will differ from the 𝑖𝑖th real in the 𝑖𝑖th digit!

• So we can’t find an 𝑘𝑘 ∈ ℕ such that 0.395 … = 𝑟𝑟𝑘𝑘.
• Contradiction, since we assumed we can enumerate all reals in [0,1].



Is ℕ < ℝ ?

• Of course!
• But how can we say this rigorously?
• Defn: 𝐴𝐴 ≤ |𝐵𝐵| if there is an injection from 𝐴𝐴 into 𝐵𝐵
• Defn: 𝐴𝐴 < |𝐵𝐵| if there is an injection from A into B but there is no 

surjection from A into B!
• Advice: Replace injection with “1-1 mapping” and surjection with “onto”



• Is the set of all functions 𝑓𝑓:ℕ ↦ ℕ countable?

More Theorems on Countability

Yes No Unknown 
to science



• Is the set of all functions 𝑓𝑓:ℕ ↦ ℕ countable?

• Cantorian proof on next slide

More Theorems on Countability

Yes No Unknown 
to science



𝑓𝑓 𝑓𝑓 ∶ ℕ ↦ ℕ} Uncountable

• Assume that the set is countable. Then, all functions from ℕ to ℕ can 
be enumerated: 

𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3, …

• Construct the function 𝑔𝑔 𝑥𝑥 = 𝑓𝑓𝑥𝑥 𝑥𝑥 + 1. 𝑔𝑔, when given input 𝑖𝑖, is 
different from 𝑓𝑓𝑖𝑖 when also given input 𝑖𝑖. So there is no 𝑘𝑘 ∈ ℕ such 
that 𝑓𝑓𝑘𝑘 = 𝑔𝑔 . Contradiction. Therefore, 𝑓𝑓 𝑓𝑓 ∶ ℕ ↦ ℕ} uncountable.



More Theorems on Countability

• Is ℝ2 = ℝ × ℝ countable?

Yes No Unknown 
to science



More Theorems on Countability

• Is ℝ2 = ℝ × ℝ countable?

• Proof: 𝑓𝑓:ℝ ↦ ℝ × ℝ such that 𝑓𝑓 𝑥𝑥 = (𝑥𝑥, 1) is an injection (1-1)
• Hence, ℝ × ℝ is at least as big as ℝ, and ℝ is uncountable.
• So , ℝ × ℝ is uncountable.

Yes No Unknown 
to science
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More Theorems on Countability

• Is ℂ (set of complex numbers) countable?

• Remember: complex numbers defined as 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑖𝑖 for 𝑎𝑎, 𝑏𝑏 ∈ ℝ.
• 𝑓𝑓:ℝ × ℝ ↦ ℂ such that 𝑓𝑓 𝑎𝑎, 𝑏𝑏 = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑖𝑖 is a bijection from ℝ × ℝ to ℂ
• But we know that ℝ × ℝ is uncountable. Therefore, ℂ is uncountable.

Yes No Unknown 
to science
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• Let 𝐴𝐴 be any uncountable set. Is there any 𝐵𝐵 ⊆ 𝐴𝐴 that is countable?
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More Theorems on Countability

• Let 𝐴𝐴 be any uncountable set. Is there any 𝐵𝐵 ⊆ 𝐴𝐴 that is countable?

• Consider: [0,1] and 1
𝑥𝑥

| 𝑥𝑥 ∈ ℕ≥1 ⊆ [0,1]

Yes No Unknown 
to science



More Theorems on Countability

• Let 𝐴𝐴 be any uncountable set. Is there any 𝐵𝐵 ⊆ 𝐴𝐴 that is countable?

• Consider: [0,1] and 1
𝑥𝑥

| 𝑥𝑥 ∈ ℕ≥1 ⊆ [0,1]

Yes No Unknown 
to science

All these are 
positive rationals!



More Theorems on Countability

• Let 0, 1 ∞ be the set of infinite sequences consisting only of 0s and 
1s

• Is it countable?

Yes No Unknown 
to science



More Theorems on Countability

• Let 0, 1 ∞ be the set of infinite sequences consisting only of 0s and 
1s

• Is it countable?

• Cantor-like proof in next slide!

Yes No Unknown 
to science



The Set of Infinite Bit-strings is Uncountable

• Assume that the set is countable, then the strings can be enumerated:
1:  000111010101010…
2:  0101011110001101…

…
n:  010101000011100…

• Construct bit-string 𝑠𝑠 which differs from the ith string in the list in the ith
digit.

• Since this string is not in the list, we can’t enumerate them all. 
Contradiction.



More Theorems on Countability

• Let 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3 … be an infinite sequence of countable sets.
• Is 𝐴𝐴1 × 𝐴𝐴2 × 𝐴𝐴3 × ⋯ countable?

Yes No Unknown 
to science



More Theorems on Countability

• Let 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3 … be an infinite sequence of countable sets.
• Is 𝐴𝐴1 × 𝐴𝐴2 × 𝐴𝐴3 × ⋯ countable?

• Cantor-like proof in next slide!

Yes No Unknown 
to science



Set of Infinite Cartesian Product of Countable 
Sets is Uncountable

• Notation: 𝑎𝑎𝑖𝑖 = {𝑎𝑎𝑖𝑖1 ,𝑎𝑎𝑖𝑖2, 𝑎𝑎𝑖𝑖3 , … }
• Suppose that the set is countable. Then, enumeration:

𝑎𝑎11, 𝑎𝑎12 , 𝑎𝑎13 ,𝑎𝑎14 , … ,
𝑎𝑎21, 𝑎𝑎22 , 𝑎𝑎23 , 𝑎𝑎24 , … ,
𝑎𝑎31, 𝑎𝑎32 ,𝑎𝑎33 ,𝑎𝑎34 , … ,

…



Set of Infinite Cartesian Product of Countable 
Sets is Uncountable

• Notation: 𝑎𝑎𝑖𝑖 = {𝑎𝑎𝑖𝑖1 ,𝑎𝑎𝑖𝑖2,𝑎𝑎𝑖𝑖3 , … }
• Suppose that the set is countable. Then, enumeration:

𝑎𝑎11, 𝑎𝑎12 , 𝑎𝑎13 , 𝑎𝑎14 , … ,
𝑎𝑎21, 𝑎𝑎22 , 𝑎𝑎23 , 𝑎𝑎24 , … ,
𝑎𝑎31, 𝑎𝑎32 ,𝑎𝑎33 , 𝑎𝑎34 , … ,

… 

Construct infinite tuple (𝑎𝑎1𝑥𝑥1 ,𝑎𝑎2𝑥𝑥2 ,𝑎𝑎3𝑥𝑥2 , … ) such that 𝑥𝑥𝑖𝑖 is an element of 𝐴𝐴𝑖𝑖
different from the element used in the ith position of the ith tuple!
• This tuple cannot be in the list, etc etc etc



More Theorems on Countability

• Is 𝒫𝒫(ℕ) (the powerset of the naturals) countable?

Yes No Unknown 
to science



More Theorems on Countability

• Is 𝒫𝒫(ℕ) (the powerset of the naturals) countable?

• Cantor-like proof in next slide!

Yes No Unknown 
to science



Powerset of Naturals Uncountable

• Assume that 𝒫𝒫(ℕ) is countable. This means that we can 
arrange all of the subsets of ℕ in a sequence: 𝑆𝑆1, 𝑆𝑆2, …

• Let 𝐴𝐴 = {𝑖𝑖 ∈ ℕ 𝑖𝑖 ∉ 𝑆𝑆𝑖𝑖 ⊆ ℕ

• By construction, 𝐴𝐴 cannot be in the list of subsets.

• Contradiction. So 𝒫𝒫(ℕ) uncountable.



Infinite Number of Infinities

• We just showed that ℕ < 𝒫𝒫(ℕ)
• Similar proof: for any set 𝐴𝐴, 𝐴𝐴 < 𝒫𝒫(𝐴𝐴)

ℕ < 𝒫𝒫 ℕ < 𝒫𝒫 𝒫𝒫 ℕ < 𝒫𝒫 𝒫𝒫 𝒫𝒫 ℕ < ⋯



Infinite Number of Infinities

• We just showed that ℕ < 𝒫𝒫(ℕ)
• Similar proof: for any set 𝐴𝐴, 𝐴𝐴 < 𝒫𝒫(𝐴𝐴)

ℕ < 𝒫𝒫 ℕ < 𝒫𝒫 𝒫𝒫 ℕ < 𝒫𝒫 𝒫𝒫 𝒫𝒫 ℕ < ⋯

• How many levels of infinity are there?

Countably 
many

Uncountably 
many (ℝ)

More than 
ℝ 42



Infinite Number of Infinities

• We just showed that ℕ < 𝒫𝒫(ℕ)
• Similar proof: for any set 𝐴𝐴, 𝐴𝐴 < 𝒫𝒫(𝐴𝐴)

ℕ < 𝒫𝒫 ℕ < 𝒫𝒫 𝒫𝒫 ℕ < 𝒫𝒫 𝒫𝒫 𝒫𝒫 ℕ < ⋯

• How many levels of infinity are there?

Countably 
many

Uncountably 
many (ℝ)

More than 
ℝ 42
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