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Inequalities



AM and GM

Def

1. The arithmetic mean (AM) of x1, . . . , xn is

x1 + · · ·+ xn
n

.

2. The geometric mean (GM) of x1, . . . , xn is

(x1 · · · xn)1/n.

How do AM and GM compare when x1, . . . , xn ∈ R+?
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AM and GM: n = 2

Assume x , y ∈ R+.
How do x+y

2 and
√
xy compare?

Discuss.

x + y

2
≥ √xy

Square both sides

x2 + 2xy + y2

4
≥ xy

x2 − 2xy + y2

4
≥ 0

(x − y)2

4
≥ 0

Proof also reveals that they are equal IFF x = y .

Why n = 2? It will be the base case. And more!



AM and GM: n = 2

Assume x , y ∈ R+.
How do x+y

2 and
√
xy compare? Discuss.

x + y

2
≥ √xy

Square both sides

x2 + 2xy + y2

4
≥ xy

x2 − 2xy + y2

4
≥ 0

(x − y)2

4
≥ 0

Proof also reveals that they are equal IFF x = y .

Why n = 2? It will be the base case. And more!



AM and GM: n = 2

Assume x , y ∈ R+.
How do x+y

2 and
√
xy compare? Discuss.

x + y

2
≥ √xy

Square both sides

x2 + 2xy + y2

4
≥ xy

x2 − 2xy + y2

4
≥ 0

(x − y)2

4
≥ 0

Proof also reveals that they are equal IFF x = y .

Why n = 2? It will be the base case. And more!



AM and GM: n = 2

Assume x , y ∈ R+.
How do x+y

2 and
√
xy compare? Discuss.

x + y

2
≥ √xy

Square both sides

x2 + 2xy + y2

4
≥ xy

x2 − 2xy + y2

4
≥ 0

(x − y)2

4
≥ 0

Proof also reveals that they are equal IFF x = y .

Why n = 2? It will be the base case. And more!



AM and GM: n = 2

Assume x , y ∈ R+.
How do x+y

2 and
√
xy compare? Discuss.

x + y

2
≥ √xy

Square both sides

x2 + 2xy + y2

4
≥ xy

x2 − 2xy + y2

4
≥ 0

(x − y)2

4
≥ 0

Proof also reveals that they are equal IFF x = y .

Why n = 2? It will be the base case. And more!



AM and GM: n = 2

Assume x , y ∈ R+.
How do x+y

2 and
√
xy compare? Discuss.

x + y

2
≥ √xy

Square both sides

x2 + 2xy + y2

4
≥ xy

x2 − 2xy + y2

4
≥ 0

(x − y)2

4
≥ 0

Proof also reveals that they are equal IFF x = y .

Why n = 2? It will be the base case. And more!



AM and GM: n = 2

Assume x , y ∈ R+.
How do x+y

2 and
√
xy compare? Discuss.

x + y

2
≥ √xy

Square both sides

x2 + 2xy + y2

4
≥ xy

x2 − 2xy + y2

4
≥ 0

(x − y)2

4
≥ 0

Proof also reveals that they are equal IFF x = y .

Why n = 2? It will be the base case. And more!



AM and GM: n = 2

Assume x , y ∈ R+.
How do x+y

2 and
√
xy compare? Discuss.

x + y

2
≥ √xy

Square both sides

x2 + 2xy + y2

4
≥ xy

x2 − 2xy + y2

4
≥ 0

(x − y)2

4
≥ 0

Proof also reveals that they are equal IFF x = y .

Why n = 2? It will be the base case. And more!



AM and GM: n = 2

Assume x , y ∈ R+.
How do x+y

2 and
√
xy compare? Discuss.

x + y

2
≥ √xy

Square both sides

x2 + 2xy + y2

4
≥ xy

x2 − 2xy + y2

4
≥ 0

(x − y)2

4
≥ 0

Proof also reveals that they are equal IFF x = y .

Why n = 2?

It will be the base case. And more!



AM and GM: n = 2

Assume x , y ∈ R+.
How do x+y

2 and
√
xy compare? Discuss.

x + y

2
≥ √xy

Square both sides

x2 + 2xy + y2

4
≥ xy

x2 − 2xy + y2

4
≥ 0

(x − y)2

4
≥ 0

Proof also reveals that they are equal IFF x = y .

Why n = 2? It will be the base case.

And more!



AM and GM: n = 2

Assume x , y ∈ R+.
How do x+y

2 and
√
xy compare? Discuss.

x + y

2
≥ √xy

Square both sides

x2 + 2xy + y2

4
≥ xy

x2 − 2xy + y2

4
≥ 0

(x − y)2

4
≥ 0

Proof also reveals that they are equal IFF x = y .

Why n = 2? It will be the base case. And more!



The AM-GM Theorem

Thm For all n ∈ N and for all x1, . . . , xn ∈ R+

x1 + · · ·+ xn
n

≥ (x1 · · · xn)1/n

Equality happens iff x1 = · · · = xn.
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A Very Odd Induction. A Very Even Induction

Recall To prove (∀n ≥ 2)[P(n)] by induction you prove

P(2)
(∀n ≥ 2))[P(n)→ P(n + 1)].

From these two you can get to any n ≥ 2.

Any set of rules that allows you to get to any number would work.

We will prove
P(2) (we already did this).
(∀n)[(P(2) ∧ P(2n−1))→ P(2n)]
(∀n < m)[P(m)→ P(n)] (YES, n < m). NOT a typo!)

From these implications we easily obtain (∀n)[P(n)].
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P(2n−1) =⇒ P(2n)

IH
∑2n−1

i=1 xi
2n−1 ≥ (

∏2n−1

i=1 xi )
1/2n−1

IS

∑2n

i=1 xi
2n

=
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i=1 xi
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+
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i=2n−1+1 xi
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2
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n < m: P(m) =⇒ P(n)

IH (∀x1, . . . , xm)[
∑m

i=1 xi
m ≥ (

∏m
i=1 xi )

1/m].

IS We care about x1+···+xn
n .

We need xn+1, . . . , xm so we can use IH.

xn+1 = · · · = xm =
x1 + · · ·+ xn

n
= α.

And now we begin the proof, starting with α.

α =
x1 + · · ·+ xn

n
=

m
n (x1 + · · ·+ xn)

m
.
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n < m: P(m) =⇒ P(n) (cont)
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This example is interesting since it uses a diff induction scheme.
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I Base Case

I IS

you can reach any n ∈ N, then (∀n)[P(n)].
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