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AM and GM: n=2

Assume x,y € RT.
How do % and ,/xy compare? Discuss.

X+y

5 =V

Square both sides

x2 4+ 2xy + y?

>
4 =X

Proof also reveals that they are equal IFF x = y.
Why n = 27 It will be the base case. And morel!
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Thm For all n € N and for all xq,...,x, € RT

X1+ -+ X

> cox )Y/
p > (X1 Xn)

Equality happens iff x; = -+ = x,.
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A Very Odd Induction. A Very Even Induction

Recall To prove (Vn > 2)[P(n)] by induction you prove
P(2)

(Vn > 2))[P(n) — P(n+1)].

From these two you can get to any n > 2.

Any set of rules that allows you to get to any number would work.

We will prove

P(2) (we already did this).

(Yn)[(P(2) A P(2771)) — P(2")]

(Vn < m)[P(m) — P(n)] (YES, n < m). NOT a typo!)

From these implications we easily obtain (¥n)[P(n)].
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Why This Example?

This example is interesting since it uses a diff induction scheme.
They key is that if you from:

> Base Case
> IS
you can reach any n € N, then (Vn)[P(n)].



