The Emptier－Filler Game

The Players and the Goal

We describe several games between

The Players and the Goal

We describe several games between
E: The Emptier

The Players and the Goal

We describe several games between
E: The Emptier
F: The Filler.

The Players and the Goal

We describe several games between
E: The Emptier
F: The Filler.
There will be a bin with numbers in it.

The Players and the Goal

We describe several games between
E: The Emptier
F: The Filler.

There will be a bin with numbers in it.

- If the bin is ever empty then E wins.

The Players and the Goal

We describe several games between
E: The Emptier
F: The Filler.

There will be a bin with numbers in it.

- If the bin is ever empty then E wins.
- If game goes forever and bin is always nonempty then F wins.

The Emptier-Filler Game on \mathbb{N}

1) F puts a finite multiset of \mathbb{N} into the bin.
(e.g., bin has $\{1,1,1,2,3,4,9,9,18,18\}$.

The Emptier-Filler Game on \mathbb{N}

1) F puts a finite multiset of \mathbb{N} into the bin.
(e.g., bin has $\{1,1,1,2,3,4,9,9,18,18\}$.
2) E takes out ONE number n (e.g., 18).

The Emptier-Filler Game on \mathbb{N}

1) F puts a finite multiset of \mathbb{N} into the bin.
(e.g., bin has $\{1,1,1,2,3,4,9,9,18,18\}$.
2) E takes out ONE number n (e.g., 18).
3) F puts in as many numbers as he wants that are $<\boldsymbol{n}$
(e.g., replace 18 with $99,999,99917$'s and 500016 's.)

The Emptier-Filler Game on \mathbb{N}

1) F puts a finite multiset of \mathbb{N} into the bin.
(e.g., bin has $\{1,1,1,2,3,4,9,9,18,18\}$.
2) E takes out ONE number n (e.g., 18).
3) F puts in as many numbers as he wants that are $<\boldsymbol{n}$
(e.g., replace 18 with $99,999,99917$'s and 500016 's.)

Which player has the winning strategy? What is that strategy.
Breakout Rooms!

Answer!

E wins!

Answer!

E wins!
Strategy for E Keep removing the largest number in the box.

Answer!

E wins!
Strategy for E Keep removing the largest number in the box. Why does this work? Lets prove it by induction! But on what?

Answer!

E wins!
Strategy for E Keep removing the largest number in the box. Why does this work? Lets prove it by induction! But on what?

1) Ind on number of balls.

Answer!

E wins!
Strategy for E Keep removing the largest number in the box.
Why does this work? Lets prove it by induction! But on what?

1) Ind on number of balls. NO GOOD- it often goes UP!

Answer!

E wins!
Strategy for E Keep removing the largest number in the box.
Why does this work? Lets prove it by induction! But on what?

1) Ind on number of balls. NO GOOD- it often goes UP!
2) Ind on highest ranked ball.

Answer!

E wins!
Strategy for E Keep removing the largest number in the box.
Why does this work? Lets prove it by induction! But on what?

1) Ind on number of balls. NO GOOD- it often goes UP!
2) Ind on highest ranked ball. NO GOOD- it often stays the same.

Answer!

E wins!
Strategy for E Keep removing the largest number in the box.
Why does this work? Lets prove it by induction! But on what?

1) Ind on number of balls. NO GOOD- it often goes UP!
2) Ind on highest ranked ball. NO GOOD- it often stays the same.
3) So what to do induction on? Discuss

Answer!

E wins!
Strategy for E Keep removing the largest number in the box.
Why does this work? Lets prove it by induction! But on what?

1) Ind on number of balls. NO GOOD- it often goes UP!
2) Ind on highest ranked ball. NO GOOD- it often stays the same.
3) So what to do induction on? Discuss

Answer on next slide.

Ind on a Funky Ordering

Ind on a Funky Ordering

Assume that the highest rank of a ball is r.

Ind on a Funky Ordering

Assume that the highest rank of a ball is r.
Assume that the number of balls of rank r is n.

Ind on a Funky Ordering

Assume that the highest rank of a ball is r.
Assume that the number of balls of rank r is n.
Then we associate to the position the ordered pair (r, n).

Ind on a Funky Ordering

Assume that the highest rank of a ball is r.
Assume that the number of balls of rank r is n.
Then we associate to the position the ordered pair (r, n).
What happens if E removes a ball of rank r and F puts in LOTS of balls of lower rank?

Ind on a Funky Ordering

Assume that the highest rank of a ball is r.
Assume that the number of balls of rank r is n.
Then we associate to the position the ordered pair (r, n).
What happens if E removes a ball of rank r and F puts in LOTS of balls of lower rank?

- If $n \geq 1$ then the ordered pair is now $(r, n-1)$.

Ind on a Funky Ordering

Assume that the highest rank of a ball is r.
Assume that the number of balls of rank r is n.
Then we associate to the position the ordered pair (r, n).
What happens if E removes a ball of rank r and F puts in LOTS of balls of lower rank?

- If $n \geq 1$ then the ordered pair is now $(r, n-1)$.
- If $n=0$ then their are no balls of rank r. Let the highest rank be $r^{\prime}<r$. Assume there are n^{\prime} balls of rank r^{\prime}. Then the ordered pair is now $\left(r^{\prime}, n^{\prime}\right)$.

Ind on a Funky Ordering

Assume that the highest rank of a ball is r.
Assume that the number of balls of rank r is n.
Then we associate to the position the ordered pair (r, n).
What happens if E removes a ball of rank r and F puts in LOTS of balls of lower rank?

- If $n \geq 1$ then the ordered pair is now $(r, n-1)$.
- If $n=0$ then their are no balls of rank r. Let the highest rank be $r^{\prime}<r$. Assume there are n^{\prime} balls of rank r^{\prime}. Then the ordered pair is now (r^{\prime}, n^{\prime}).
Consider the following funky ordering on ordered pairs.

$$
(0,0)<(0,1)<(0,2)<\cdots<(1,0)<(1,1)<(1,2)<\cdots \cdots .
$$

Ind on a Funky Ordering

Assume that the highest rank of a ball is r.
Assume that the number of balls of rank r is n.
Then we associate to the position the ordered pair (r, n).
What happens if E removes a ball of rank r and F puts in LOTS of balls of lower rank?

- If $n \geq 1$ then the ordered pair is now $(r, n-1)$.
- If $n=0$ then their are no balls of rank r. Let the highest rank be $r^{\prime}<r$. Assume there are n^{\prime} balls of rank r^{\prime}. Then the ordered pair is now (r^{\prime}, n^{\prime}).
Consider the following funky ordering on ordered pairs.

$$
(0,0)<(0,1)<(0,2)<\cdots<(1,0)<(1,1)<(1,2)<\cdots \cdots .
$$

This is the ordering to use since this quantity always decreases.

Formal Proof

Thm E wins the game by removing the largest ranked ball.

Formal Proof

Thm E wins the game by removing the largest ranked ball. Proof By induction on the funky ordering.

Formal Proof

Thm E wins the game by removing the largest ranked ball.
Proof By induction on the funky ordering.
IB $(0,0)$. E has already won.

Formal Proof

Thm E wins the game by removing the largest ranked ball.
Proof By induction on the funky ordering.
IB $(0,0)$. E has already won.
IH Assume that for all $\left(n^{\prime}, r^{\prime}\right)<(n, r)$, E wins.

Formal Proof

Thm E wins the game by removing the largest ranked ball.
Proof By induction on the funky ordering.
IB $(0,0)$. E has already won.
IH Assume that for all $\left(n^{\prime}, r^{\prime}\right)<(n, r)$, E wins.
IS The game is at position (n, r).

Formal Proof

Thm E wins the game by removing the largest ranked ball.
Proof By induction on the funky ordering.
IB $(0,0)$. E has already won.
IH Assume that for all $\left(n^{\prime}, r^{\prime}\right)<(n, r)$, E wins.
IS The game is at position (n, r).
As noted in the last slide if E removes the top ranked ball and F puts in as many balls of lower rank, then the resulting position is associated to $\left(n^{\prime}, r^{\prime}\right)<(n, r)$.

Formal Proof

Thm E wins the game by removing the largest ranked ball.
Proof By induction on the funky ordering.
IB $(0,0)$. E has already won.
IH Assume that for all $\left(n^{\prime}, r^{\prime}\right)<(n, r)$, E wins.
IS The game is at position (n, r).
As noted in the last slide if E removes the top ranked ball and F puts in as many balls of lower rank, then the resulting position is associated to $\left(n^{\prime}, r^{\prime}\right)<(n, r)$.
From here, by the IH, E wins.
End of Proof

Formal Proof

Thm E wins the game by removing the largest ranked ball.
Proof By induction on the funky ordering.
IB $(0,0)$. E has already won.
IH Assume that for all $\left(n^{\prime}, r^{\prime}\right)<(n, r)$, E wins.
IS The game is at position (n, r).
As noted in the last slide if E removes the top ranked ball and F puts in as many balls of lower rank, then the resulting position is associated to $\left(n^{\prime}, r^{\prime}\right)<(n, r)$.
From here, by the IH, E wins.
End of Proof
But Can we do induction on this funky ordering?

The Funky Ordering

$$
(0,0)<(0,1)<(0,2)<\cdots<(1,0)<(1,1)<(1,2)<\cdots \cdots .
$$

The Funky Ordering

$$
(0,0)<(0,1)<(0,2)<\cdots<(1,0)<(1,1)<(1,2)<\cdots \cdots .
$$

What is it about \mathbb{N} that makes induction work?

The Funky Ordering

$$
(0,0)<(0,1)<(0,2)<\cdots<(1,0)<(1,1)<(1,2)<\cdots \cdots .
$$

What is it about \mathbb{N} that makes induction work?
\mathbb{N} It only used that if you start at some n and march downward you will in a finite number of steps get to 0 . In fact, just n steps.

The Funky Ordering

$$
(0,0)<(0,1)<(0,2)<\cdots<(1,0)<(1,1)<(1,2)<\cdots \cdots .
$$

What is it about \mathbb{N} that makes induction work?
\mathbb{N} It only used that if you start at some n and march downward you will in a finite number of steps get to 0 . In fact, just n steps.

Funky Ordering If you start at (n, r) and march downward will you get to $(0,0)$ in a finite number of steps? Discuss.

The Funky Ordering

$$
(0,0)<(0,1)<(0,2)<\cdots<(1,0)<(1,1)<(1,2)<\cdots \cdots .
$$

What is it about \mathbb{N} that makes induction work?
\mathbb{N} It only used that if you start at some n and march downward you will in a finite number of steps get to 0 . In fact, just n steps.

Funky Ordering If you start at (n, r) and march downward will you get to $(0,0)$ in a finite number of steps? Discuss.
Yes. However there is no bound on that number of steps. But that does not matter.

The Funky Ordering

$$
(0,0)<(0,1)<(0,2)<\cdots<(1,0)<(1,1)<(1,2)<\cdots \cdots .
$$

What is it about \mathbb{N} that makes induction work?
\mathbb{N} It only used that if you start at some n and march downward you will in a finite number of steps get to 0 . In fact, just n steps.

Funky Ordering If you start at (n, r) and march downward will you get to $(0,0)$ in a finite number of steps? Discuss.
Yes. However there is no bound on that number of steps. But that does not matter.
Def An ordering is well ordered if when you start at any element x and march downward you will get to a MIN element in a finite number of steps.

The Funky Ordering

$$
(0,0)<(0,1)<(0,2)<\cdots<(1,0)<(1,1)<(1,2)<\cdots \cdots .
$$

What is it about \mathbb{N} that makes induction work?
\mathbb{N} It only used that if you start at some n and march downward you will in a finite number of steps get to 0 . In fact, just n steps.

Funky Ordering If you start at (n, r) and march downward will you get to $(0,0)$ in a finite number of steps? Discuss.
Yes. However there is no bound on that number of steps. But that does not matter.
Def An ordering is well ordered if when you start at any element x and march downward you will get to a MIN element in a finite number of steps.
Upshot You can do induction on any well ordered ordering.

Does the Strategy Matter?

Does the Strategy Matter?

What if E plays differently? One can show that no matter what E does, she wins!

Does the Strategy Matter?

What if E plays differently? One can show that no matter what E does, she wins!
How to prove that? By an induction on a an even funkier ordering. We won't be doing that.

The Emptier-Filler Game on Other Orderings

X is any of $\mathbb{Z}, \mathbb{Q}^{\geq 0}, \mathbb{N}+\mathbb{N}, \mathbb{N}+\mathbb{N}+\cdots, \mathbb{N}+\mathbb{Z}, \mathbb{N}+\mathbb{N}^{*}$.

1) F puts a finite multiset of X into the bin.

The Emptier-Filler Game on Other Orderings

X is any of $\mathbb{Z}, \mathbb{Q}^{\geq 0}, \mathbb{N}+\mathbb{N}, \mathbb{N}+\mathbb{N}+\cdots, \mathbb{N}+\mathbb{Z}, \mathbb{N}+\mathbb{N}^{*}$.

1) F puts a finite multiset of X into the bin.
2) E takes out ONE number n.

The Emptier-Filler Game on Other Orderings

X is any of $\mathbb{Z}, \mathbb{Q}^{\geq 0}, \mathbb{N}+\mathbb{N}, \mathbb{N}+\mathbb{N}+\cdots, \mathbb{N}+\mathbb{Z}, \mathbb{N}+\mathbb{N}^{*}$.

1) F puts a finite multiset of X into the bin.
2) E takes out ONE number n.
3) F puts in as many numbers as he wants that are $<\boldsymbol{n}$

The Emptier-Filler Game on Other Orderings

X is any of $\mathbb{Z}, \mathbb{Q}^{\geq 0}, \mathbb{N}+\mathbb{N}, \mathbb{N}+\mathbb{N}+\cdots, \mathbb{N}+\mathbb{Z}, \mathbb{N}+\mathbb{N}^{*}$.

1) F puts a finite multiset of X into the bin.
2) E takes out ONE number n.
3) F puts in as many numbers as he wants that are $<\boldsymbol{n}$

For each of $X=\mathbb{Z}, X=\mathbb{Q}, X=\mathbb{N}+N, X=\mathbb{N}+\mathbb{N}+\cdots$, $X=\mathbb{N}+\mathbb{Z}, X=\mathbb{N}+\mathbb{N}^{*}$ who wins?
Breakout Rooms!

Answers!

$$
\boldsymbol{X}=\mathbb{N}
$$

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element
$\boldsymbol{X}=\mathbb{Z}$

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element $\boldsymbol{X}=\mathbb{Z}$ F wins-If E removes $n, \mathrm{~F}$ puts in $n-1$.

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element $\boldsymbol{X}=\mathbb{Z}$ F wins-If E removes $n, \mathrm{~F}$ puts in $n-1$.
$\boldsymbol{X}=\mathbb{Q}$

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element $\boldsymbol{X}=\mathbb{Z} \mathrm{F}$ wins-If E removes $n, \mathrm{~F}$ puts in $n-1$.
$\boldsymbol{X}=\mathbb{Q} \mathrm{F}$ wins-If E removes $n, \mathrm{~F}$ puts in $\frac{n}{2}$.

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element $\boldsymbol{X}=\mathbb{Z} \mathrm{F}$ wins-If E removes $n, \mathrm{~F}$ puts in $n-1$.
$\boldsymbol{X}=\mathbb{Q} \mathrm{F}$ wins-If E removes $n, \mathrm{~F}$ puts in $\frac{n}{2}$.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N}$

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element
$\boldsymbol{X}=\mathbb{Z}$ F wins-If E removes $n, \mathrm{~F}$ puts in $n-1$.
$\boldsymbol{X}=\mathbb{Q} \mathrm{F}$ wins-If E removes n, F puts in $\frac{n}{2}$.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element.

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element
$\boldsymbol{X}=\mathbb{Z}$ F wins-If E removes n, F puts in $n-1$.
$\boldsymbol{X}=\mathbb{Q} \mathrm{F}$ wins-If E removes $n, \mathrm{~F}$ puts in $\frac{n}{2}$.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element.
Key When you remove the 0 in second copy of \mathbb{N} you have to replace it with some element of the first \mathbb{N}. So eventually all elements are in first \mathbb{N}.

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element
$\boldsymbol{X}=\mathbb{Z}$ F wins-If E removes $n, \mathrm{~F}$ puts in $n-1$.
$\boldsymbol{X}=\mathbb{Q} \mathrm{F}$ wins-If E removes n, F puts in $\frac{n}{2}$.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element.
Key When you remove the 0 in second copy of \mathbb{N} you have to replace it with some element of the first \mathbb{N}. So eventually all elements are in first \mathbb{N}.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N}+\mathbb{N}$

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element
$\boldsymbol{X}=\mathbb{Z}$ F wins-If E removes $n, \mathrm{~F}$ puts in $n-1$.
$\boldsymbol{X}=\mathbb{Q} \mathrm{F}$ wins-If E removes n, F puts in $\frac{n}{2}$.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element.
Key When you remove the 0 in second copy of \mathbb{N} you have to replace it with some element of the first \mathbb{N}. So eventually all elements are in first \mathbb{N}.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element.

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element
$\boldsymbol{X}=\mathbb{Z}$ F wins-If E removes $n, \mathrm{~F}$ puts in $n-1$.
$\boldsymbol{X}=\mathbb{Q} \mathrm{F}$ wins-If E removes $n, \mathrm{~F}$ puts in $\frac{n}{2}$.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element.
Key When you remove the 0 in second copy of \mathbb{N} you have to replace it with some element of the first \mathbb{N}. So eventually all elements are in first \mathbb{N}.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element. Key When you remove the 0 in third copy of \mathbb{N} you have to replace it with some element of the second of first \mathbb{N}. So eventually all elements from the third copy are in the second. And then in the first.

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element
$\boldsymbol{X}=\mathbb{Z}$ F wins-If E removes $n, \mathrm{~F}$ puts in $n-1$.
$\boldsymbol{X}=\mathbb{Q} \mathrm{F}$ wins-If E removes $n, \mathrm{~F}$ puts in $\frac{n}{2}$.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element.
Key When you remove the 0 in second copy of \mathbb{N} you have to replace it with some element of the first \mathbb{N}. So eventually all elements are in first \mathbb{N}.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element.
Key When you remove the 0 in third copy of \mathbb{N} you have to replace it with some element of the second of first \mathbb{N}. So eventually all elements from the third copy are in the second. And then in the first.
How to make this rigorous?

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element
$\boldsymbol{X}=\mathbb{Z}$ F wins-If E removes $n, \mathrm{~F}$ puts in $n-1$.
$\boldsymbol{X}=\mathbb{Q} \mathrm{F}$ wins-If E removes $n, \mathrm{~F}$ puts in $\frac{n}{2}$.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element.
Key When you remove the 0 in second copy of \mathbb{N} you have to replace it with some element of the first \mathbb{N}. So eventually all elements are in first \mathbb{N}.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element. Key When you remove the 0 in third copy of \mathbb{N} you have to replace it with some element of the second of first \mathbb{N}. So eventually all elements from the third copy are in the second. And then in the first.
How to make this rigorous? Ind on the number of copies of \mathbb{N}.

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element
$\boldsymbol{X}=\mathbb{Z}$ F wins-If E removes $n, \mathrm{~F}$ puts in $n-1$.
$\boldsymbol{X}=\mathbb{Q} \mathrm{F}$ wins-If E removes $n, \mathrm{~F}$ puts in $\frac{n}{2}$.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element.
Key When you remove the 0 in second copy of \mathbb{N} you have to replace it with some element of the first \mathbb{N}. So eventually all elements are in first \mathbb{N}.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element. Key When you remove the 0 in third copy of \mathbb{N} you have to replace it with some element of the second of first \mathbb{N}. So eventually all elements from the third copy are in the second. And then in the first.
How to make this rigorous? Ind on the number of copies of \mathbb{N}.
$\boldsymbol{X}=\mathbb{N}+\mathbb{Z}$

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element
$\boldsymbol{X}=\mathbb{Z}$ F wins-If E removes $n, \mathrm{~F}$ puts in $n-1$.
$\boldsymbol{X}=\mathbb{Q} \mathrm{F}$ wins-If E removes $n, \mathrm{~F}$ puts in $\frac{n}{2}$.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element.
Key When you remove the 0 in second copy of \mathbb{N} you have to replace it with some element of the first \mathbb{N}. So eventually all elements are in first \mathbb{N}.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element. Key When you remove the 0 in third copy of \mathbb{N} you have to replace it with some element of the second of first \mathbb{N}. So eventually all elements from the third copy are in the second. And then in the first.
How to make this rigorous? Ind on the number of copies of \mathbb{N}. $\boldsymbol{X}=\mathbb{N}+\mathbb{Z} \mathrm{F}$ wins. Bin initially has 0 in \mathbb{Z}, then always replace n by $n-1$ in \mathbb{Z}

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element
$\boldsymbol{X}=\mathbb{Z}$ F wins-If E removes $n, \mathrm{~F}$ puts in $n-1$.
$\boldsymbol{X}=\mathbb{Q} \mathrm{F}$ wins-If E removes $n, \mathrm{~F}$ puts in $\frac{n}{2}$.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element.
Key When you remove the 0 in second copy of \mathbb{N} you have to replace it with some element of the first \mathbb{N}. So eventually all elements are in first \mathbb{N}.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element.
Key When you remove the 0 in third copy of \mathbb{N} you have to replace it with some element of the second of first \mathbb{N}. So eventually all elements from the third copy are in the second. And then in the first.
How to make this rigorous? Ind on the number of copies of \mathbb{N}. $\boldsymbol{X}=\mathbb{N}+\mathbb{Z} \mathrm{F}$ wins. Bin initially has 0 in \mathbb{Z}, then always replace n by $n-1$ in \mathbb{Z}
$\boldsymbol{X}=\mathbb{N}+\mathbb{N}^{*}$

Answers!

$\boldsymbol{X}=\mathbb{N} \mathrm{E}$ wins-Always remove the largest element
$\boldsymbol{X}=\mathbb{Z}$ F wins-If E removes $n, \mathrm{~F}$ puts in $n-1$.
$\boldsymbol{X}=\mathbb{Q} \mathrm{F}$ wins-If E removes $n, \mathrm{~F}$ puts in $\frac{n}{2}$.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element.
Key When you remove the 0 in second copy of \mathbb{N} you have to replace it with some element of the first \mathbb{N}. So eventually all elements are in first \mathbb{N}.
$\boldsymbol{X}=\mathbb{N}+\mathbb{N}+\mathbb{N} \mathrm{E}$ wins-Always remove the largest element. Key When you remove the 0 in third copy of \mathbb{N} you have to replace it with some element of the second of first \mathbb{N}. So eventually all elements from the third copy are in the second. And then in the first.
How to make this rigorous? Ind on the number of copies of \mathbb{N}. $\boldsymbol{X}=\mathbb{N}+\mathbb{Z} \mathrm{F}$ wins. Bin initially has 0 in \mathbb{Z}, then always replace n by $n-1$ in \mathbb{Z}
$\boldsymbol{X}=\mathbb{N}+\mathbb{N}^{*} \mathrm{~F}$ wins. Bin initially has 0 in \mathbb{N}^{*}, then always replace n by $n-1$ in \mathbb{N}^{*}

Need a General Theorem

Question Let X be a set and \preceq be an ordering on it. Let the (X, \preceq)-game be the game as above where we put elements of X in the bin.

Need a General Theorem

Question Let X be a set and \preceq be an ordering on it. Let the (X, \preceq)-game be the game as above where we put elements of X in the bin.

In the following sentence fill in the ???
\mathbf{E} can win the (X, \preceq)-game if and only if (X, \preceq) has property ???.
Breakout Rooms!

Answer!

Def (X, \preceq) is well ordered if there are NO infinite decreasing sequences.

Answer!

Def (X, \preceq) is well ordered if there are NO infinite decreasing sequences.

E can win the (X, \preceq)-game if and only if (X, \preceq) is well ordered.

