## Induction Review

250H

## Weak Induction

- 1 base case


## Strong Induction

- 1 or more base case


## Weak Induction

- 1 base case
- Inductive Hypothesis: For some $\mathrm{n} \geq$ base, what we are trying to prove is true


## Strong Induction

- 1 or more base case
- Inductive Hypothesis: For some base $\leq \mathrm{i} \leq \mathrm{n}$, what we are trying to prove is true


## Weak Induction

- 1 base case
- Inductive Hypothesis: For some $n \geq$ base, what we are trying to prove is true
- Inductive step: Prove the statement true when $\mathrm{n}=\mathrm{n}+1$ case. YOU MUST USE YOUR HYPOTHESIS IN THIS PROOF.


## Strong Induction

- 1 or more base case
- Inductive Hypothesis: For some base $\leq \mathrm{i} \leq \mathrm{n}$, what we are trying to prove is true
- Inductive step: Prove the statement true when $\mathrm{n}=\mathrm{n}+1$ case. You might have to take several steps back in the proof. YOU MUST USE YOUR HYPOTHESIS IN THIS PROOF.

Weak Induction Example: Prove that $\mathrm{a}^{4}-1$ is divisible by 16 for all odd integers a.

Proof by Induction: First consider positive integers.
Base Case: Let $a=1$, Then $a^{4}-1=1^{4}-1=0 \equiv 0 \bmod 16$

Thus our base cases hold.

Weak Induction Example: Prove that $a^{4}-1$ is divisible by 16 for all odd integers a.

Proof by Induction: First consider positive integers.
Base Case: Let $a=1$, Then $a^{4}-1=1^{4}-1=0 \equiv 0 \bmod 16$

Thus our base cases hold.

Inductive Hypothesis: Assume that for some odd integer $a>=1$,
$a^{4}-1$ is divisible by 16 .

Weak Induction Example: Prove that $a^{4}-1$ is divisible by 16 for all odd integers a.

Inductive Step: We want to look at the next odd integer.

So we will look at $a=a+2$.

Then, we have $(a+2)^{4}-1 \equiv 15+32 a+24 a^{2}+8 a^{3}+a^{4} \bmod 16$

$$
\equiv-1+8 a^{2}+8 a^{3}+a^{4} \bmod 16
$$

By our inductive hypothesis,

$$
\equiv 8 a^{2}(1+a) \bmod 16 .
$$

Weak Induction Example: Prove that $a^{4}-1$ is divisible by 16 for all odd integers a.

By our inductive hypothesis,

$$
\equiv 8 a^{2}(1+a) \bmod 16
$$

Note $a$ is odd, so $1+a$ is a even number call it $2 k$ where $k \in Z$. So,

$$
\equiv 8 a^{2}(2 k) \bmod 16
$$

$\equiv 0 \bmod 16$.

Doing the negative integers will follow this same form. D

## Strong Induction Example:

Given $a_{n}=\left\{\begin{array}{ll}2 & n=1,2 \\ 6 & n=3 \\ 3 a_{n-3} & n>3\end{array}\right.$, prove that $a_{n}=2 \cdot 3^{\left\lfloor\frac{n}{3}\right\rfloor}$ for all positive integers $n$.

Given $a_{n}=\left\{\begin{array}{ll}2 & n=1,2 \\ 6 & n=3 \\ 3 a_{n-3} & n>3\end{array}\right.$, prove that $a_{n}=2 \cdot 3^{\left\lfloor\frac{n}{3}\right\rfloor}$ for all positive integers $n$.
Proof by induction:
Base Cases: Consider $a_{1}, a_{2}$, and $a_{3}$,

$$
\left.\begin{array}{l}
a_{1}=2\left(3^{\left\lfloor\frac{1}{3}\right.}\right\rfloor
\end{array}\right)=2\left(3^{0}\right)=2, ~=2\left(3^{\left\lfloor\frac{2}{3}\right\rfloor}\right)=2\left(3^{0}\right)=22\left(3^{\left\lfloor\frac{3}{3}\right\rfloor}\right)=2\left(3^{1}\right)=6
$$

So, our base cases hold.

Given $a_{n}=\left\{\begin{array}{ll}2 & n=1,2 \\ 6 & n=3 \\ 3 a_{n-3} & n>3\end{array}\right.$, prove that $a_{n}=2 \cdot 3^{\left\lfloor\frac{n}{3}\right\rfloor}$ for all positive integers $n$.

Inductive Hypothesis: Assume for $k \geq 3$ that $\left.a_{i}=2\left(3^{\left\lfloor\frac{i}{3}\right.}\right\rfloor\right)$ for all integers with $1 \leq i \leq k$.

Given $a_{n}=\left\{\begin{array}{ll}2 & n=1,2 \\ 6 & n=3 \\ 3 a_{n-3} & n>3\end{array}\right.$, prove that $a_{n}=2 \cdot 3^{\left\lfloor\frac{n}{3}\right\rfloor}$ for all positive integers $n$.

Inductive Hypothesis: Assume for $k \geq 3$ that $\left.a_{i}=2\left(3^{\left\lfloor\frac{i}{3}\right.}\right\rfloor\right)$ for all integers with $1 \leq i \leq k$.

## $\mathbf{k + 1}$ step:

$$
a_{k+1}=3 a_{k-2}
$$

. Since $k+1 \geq 4$ and from our inductive hypothesis,

$$
a_{k+1}=3\left(2\left(3^{\left\lfloor\frac{k-2}{3}\right\rfloor}\right)\right)
$$

Given $a_{n}=\left\{\begin{array}{ll}2 & n=1,2 \\ 6 & n=3 \\ 3 a_{n-3} & n>3\end{array}\right.$, prove that $a_{n}=2 \cdot 3^{\left\lfloor\frac{n}{3}\right\rfloor}$ for all positive integers $n$.
k+1 step:

$$
a_{k+1}=3 a_{k-2}
$$

. Since $k+1 \geq 4$ and from our inductive hypothesis,

$$
\begin{gathered}
a_{k+1}=3\left(2\left(3^{\left\lfloor\frac{k-2}{3}\right\rfloor}\right)\right) \\
a_{k+1}=2\left(3^{\left\lfloor\frac{k-2+3}{3}\right\rfloor+1}\right) \\
a_{k+1}=2\left(3^{\left\lfloor\frac{k-2+3}{3}\right\rfloor}\right) \\
a_{k+1}=2\left(3^{\left\lfloor\frac{k+1}{3}\right\rfloor}\right)
\end{gathered}
$$

Therefore by Principle of Mathematical Induction, our formula holds.

Use strong induction to prove that $\sqrt{2}$ is irrational. [Hint: Let $P(n)$ be the statement that $\sqrt{2} \neq n / b$ for any positive integer $b$ ]

Use strong induction to prove that $\sqrt{2}$ is irrational. [Hint: Let $P(n)$ be the statement that $\sqrt{2} \neq n / b$ for any positive integer $b$ ]

Base Case: Let $\mathrm{n}=1$. Then we have $\sqrt{2}>1>1 / b$. Note as $b$ grows, $1 / b$ shrinks.

So our base case holds for all positive integers $b$.

Use strong induction to prove that $\sqrt{2}$ is irrational. [Hint: Let $P(n)$ be the statement that $\sqrt{2} \neq n / b$ for any positive integer $b$ ]

Base Case: Let $\mathrm{n}=1$. Then we have $\sqrt{2}>1>1 / b$. Note as $b$ grows, $1 / b$ shrinks.

So our base case holds for all positive integers $b$.
Inductive Hypothesis: Assume that $\sqrt{2} \neq n / b$ for any positive integer $b$

$$
\text { for } 1 \leq k \leq n \text {. }
$$

Inductive Step: For the sake of contradiction, assume $\sqrt{2}=(n+1) / b$
for some positive integer $b$. Then,

$$
\begin{aligned}
& 2=(n+1)^{2} / b^{2} \\
& 2 b^{2}=(n+1)^{2}
\end{aligned}
$$

Inductive Step: For the sake of contradiction, assume $\sqrt{2}=(n+1) / b$
for some positive integer $b$. Then,

$$
\begin{aligned}
& 2=(n+1)^{2} / b^{2} \\
& 2 b^{2}=(n+1)^{2}
\end{aligned}
$$

Then, $(n+1)^{2}$ and $(n+1)$ are even. So $(n+1)$ can be written as
$2 k$ where $k \in Z$. So,

$$
\begin{aligned}
& 2 b^{2}=(2 k)^{2} \\
& 2 b^{2}=4 k^{2} \\
& b^{2}=2 k^{2}
\end{aligned}
$$

$$
b^{2}=2 k^{2}
$$

Thus, $b^{2}$ is even and can be written as $2 j$ where $j \in Z$.

So,

$$
\begin{aligned}
& \sqrt{2}=(n+1) / b \\
& \sqrt{2}=2 k / 2 j
\end{aligned}
$$

$$
b^{2}=2 k^{2}
$$

Thus, $b^{2}$ is even and can be written as $2 j$ where $j \in Z$.

So,

$$
\begin{aligned}
& \sqrt{2}=(n+1) / b \\
& \sqrt{2}=2 k / 2 j \\
& \sqrt{2}=k / j
\end{aligned}
$$

But, $k \leq n$, so this contradicts the inductive hypothesis.

So, $\sqrt{2}$ is irrational. D

