Reciprocal Theorems

THE Reciprocal Theorem

Thm $(\forall n \geq 3)(\exists d_1 < \cdots < d_n)$ such that $1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

THE Reciprocal Theorem

Thm
$$(\forall n \geq 3)(\exists d_1 < \cdots < d_n)$$
 such that $1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}$.

We will proof this theorem an infinite number of ways.

THE Reciprocal Theorem

Thm
$$(\forall n \ge 3)(\exists d_1 < \cdots < d_n)$$
 such that $1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}$.

We will proof this theorem an infinite number of ways.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

All of them will be by induction.

We will usually only need the n = 3 base case:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

We will usually only need the n = 3 base case: $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$.

(ロト (個) (E) (E) (E) (E) のへの

We will usually only need the n = 3 base case: $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$.

We may sometimes need the n = 4 base case:

(ロト (個) (E) (E) (E) (E) のへの

We will usually only need the n = 3 base case: $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$.

We may sometimes need the n = 4 base case: $\frac{1}{2} + \frac{1}{3} + \frac{1}{8} + \frac{1}{24} = 1.$

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

Proof One. This was on Midterm Two

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

IS We prove $P(n) \rightarrow P(n+1)$.

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

IS We prove
$$P(n) \rightarrow P(n+1)$$
.
We use that $\frac{1}{d_n} = \frac{1}{d_n+1} + \frac{1}{d_n(d_n+1)}$.

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}$$

IS We prove $P(n) \rightarrow P(n+1)$. We use that $\frac{1}{d_n} = \frac{1}{d_n+1} + \frac{1}{d_n(d_n+1)}$.

$$1 = \frac{1}{d_1} + \dots + \frac{1}{d_n} = \frac{1}{d_1} + \dots + \frac{1}{d_{n-1}} + \frac{1}{d_n+1} + \frac{1}{d_n(d_n+1)}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Proof Two. Bigger Base Case and $P(n) \rightarrow P(n+2)$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Bill wants to prove $(\forall n \ge 3)[P(n)]$.

Bill wants to prove $(\forall n \ge 3)[P(n)]$. So Bill proves

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Bill wants to prove $(\forall n \ge 3)[P(n)]$. So Bill proves P(3)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Bill wants to prove $(\forall n \ge 3)[P(n)]$. So Bill proves P(3) P(4)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Bill wants to prove $(\forall n \ge 3)[P(n)]$. So Bill proves P(3) P(4) $(\forall n \ge 3)[P(n) \rightarrow P(n+2)].$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Bill wants to prove $(\forall n \ge 3)[P(n)]$. So Bill proves

P(3) P(4) $(\forall n \ge 3)[P(n) \rightarrow P(n+2)].$

This Works! From the above you can construct a proof of P(n) for any $n \ge 3$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Bill wants to prove $(\forall n \ge 3)[P(n)]$. So Bill proves

P(3) P(4) $(\forall n \ge 3)[P(n) \rightarrow P(n+2)].$

This Works! From the above you can construct a proof of P(n) for any $n \ge 3$.

For the case at hand we already did the n = 3 and n = 4 base case.

ション ふゆ アメリア メリア しょうくしゃ

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

IS We prove $P(n) \rightarrow P(n+2)$.

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

$$1 = \frac{1}{d_1} + \dots + \frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n+2)$.
We use that $\frac{1}{d_n} = \frac{1}{2d_n} + \frac{1}{3d_n} + \frac{1}{6d_n}$.

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1 = \frac{1}{d_1} + \dots + \frac{1}{d_n}.$$
IS We prove $P(n) \to P(n+2)$.
We use that $\frac{1}{d_n} = \frac{1}{2d_n} + \frac{1}{3d_n} + \frac{1}{6d_n}.$

$$1 = \frac{1}{d_1} + \dots + \frac{1}{d_n} = \frac{1}{d_1} + \dots + \frac{1}{d_{n-1}} + \frac{1}{2d_n} + \frac{1}{3d_n} + \frac{1}{6d_n}.$$

▲□▶▲□▶▲□▶▲□▶ ■ りへぐ

Proof 2 used

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

by using

Proof 2 used

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$

by using

$$\frac{1}{d} = \frac{1}{2d} + \frac{1}{3d} + \frac{1}{6d}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Proof 2 used

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$

by using

$$\frac{1}{d} = \frac{1}{2d} + \frac{1}{3d} + \frac{1}{6d}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Can we use any way to write 1 as a sum of reciprocals?

Proof 2 used

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$

by using

$$\frac{1}{d} = \frac{1}{2d} + \frac{1}{3d} + \frac{1}{6d}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Can we use **any** way to write 1 as a sum of reciprocals? Our next proof does this and make some other points of interest.

Proof Three. Load the IH

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Note that

$$1 = \frac{1}{3/2} + \frac{1}{3}.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Note that

$$1 = \frac{1}{3/2} + \frac{1}{3}.$$

Hence

$$\frac{1}{d}=\frac{1}{3d/2}+\frac{1}{3d}.$$

Note that

$$1 = \frac{1}{3/2} + \frac{1}{3}.$$

Hence

$$\frac{1}{d}=\frac{1}{3d/2}+\frac{1}{3d}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Can we use this?

Note that

$$1 = \frac{1}{3/2} + \frac{1}{3}.$$

Hence

$$\frac{1}{d}=\frac{1}{3d/2}+\frac{1}{3d}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Can we use this?

Lets try to use it manually.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

 $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$

 $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$ Use

$$1 = rac{1}{2} + rac{1}{3} + rac{1}{6}$$
 Use $rac{1}{d} = rac{1}{3d/2} + rac{1}{3d}$:

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$
 Use
 $\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}: \qquad \frac{1}{6} = \frac{1}{9} + \frac{1}{18}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \text{ Use}$$
$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \qquad \frac{1}{6} = \frac{1}{9} + \frac{1}{18}$$
$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \text{ Use}$$
$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \qquad \frac{1}{6} = \frac{1}{9} + \frac{1}{18}$$
$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$
$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} :$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \text{ Use}$$
$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \qquad \frac{1}{6} = \frac{1}{9} + \frac{1}{18}$$
$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$
$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \qquad \frac{1}{18} = \frac{1}{27} + \frac{1}{54}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \text{ Use}$$

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \qquad \frac{1}{6} = \frac{1}{9} + \frac{1}{18}$$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \qquad \frac{1}{18} = \frac{1}{27} + \frac{1}{54}$$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \text{ Use}$$

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \qquad \frac{1}{6} = \frac{1}{9} + \frac{1}{18}$$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \qquad \frac{1}{18} = \frac{1}{27} + \frac{1}{54}$$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54}$$
Can we keep doing this?

・ロト・個ト・モト・モー ショイの

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▼ 釣∝⊙

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \text{ Use}$$

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \qquad \frac{1}{6} = \frac{1}{9} + \frac{1}{18}$$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \qquad \frac{1}{18} = \frac{1}{27} + \frac{1}{54}$$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54}$$
Can we keep doing this? Yes.
Can we make this process into a rigorous proof?

・ロト・個ト・モト・モー ショイの

 $1 = \frac{1}{2} + \frac{1}{2} + \frac{1}{6}$ Use $\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$: $\frac{1}{6} = \frac{1}{9} + \frac{1}{18}$ $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$ $\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$: $\frac{1}{18} = \frac{1}{27} + \frac{1}{54}$ $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} + \frac{1}{27} + \frac{1}{54}$ Can we keep doing this? Yes. Can we make this process into a rigorous proof? Discuss

・ロト・西ト・モート 一日・ 今々で

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \text{ Use}$$

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \qquad \frac{1}{6} = \frac{1}{9} + \frac{1}{18}$$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \qquad \frac{1}{18} = \frac{1}{27} + \frac{1}{54}$$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54}$$
Can we keep doing this? Yes.
Can we make this process into a rigorous proof? Discuss
It works so long as the last number is $\equiv 0 \pmod{2}$.

・ロト・西ト・モー・モー シックシー

Convention \equiv means \equiv (mod 2).

Convention \equiv means $\equiv \pmod{2}$. **Thm** $(\forall n \geq 3)(\exists d_1 < \cdots < d_n, d_n \equiv 0)$ such that $1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Convention \equiv means $\equiv \pmod{2}$. **Thm** $(\forall n \ge 3)(\exists d_1 < \cdots < d_n, d_n \equiv 0)$ such that $1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}$. We are demanding more, since we demand $d_n \equiv 0$.

- * ロト * 母 ト * ヨト * ヨト - ヨ - のくぐ

Convention \equiv means $\equiv \pmod{2}$. **Thm** $(\forall n \geq 3)(\exists d_1 < \cdots < d_n, d_n \equiv 0)$ such that $1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}$. We are demanding more, since we demand $d_n \equiv 0$. But we get to use this in the IH.

Convention \equiv means $\equiv \pmod{2}$. **Thm** $(\forall n \geq 3)(\exists d_1 < \cdots < d_n, d_n \equiv 0)$ such that $1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}$. We are demanding more, since we demand $d_n \equiv 0$. But we get to use this in the IH.

Loading the IH Proving a harder theorem so that the IH is stronger.

IB
$$d = 3$$
. $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$, $6 \equiv 0$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - - のへで

IB d = 3. $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$, $6 \equiv 0$. **IH** $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that $d_n \equiv 0$ and

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}$$

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

IB d = 3. $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$, $6 \equiv 0$. **IH** $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that $d_n \equiv 0$ and

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

IS We prove $P(n) \rightarrow P(n+1)$.

IB d = 3. $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$, $6 \equiv 0$. **IH** $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that $d_n \equiv 0$ and

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n+1)$. We use that $\frac{1}{d_n} = \frac{1}{3d_n/2} + \frac{1}{3d_n}$.

IB d = 3. $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$, $6 \equiv 0$. **IH** $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that $d_n \equiv 0$ and

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

ション ふゆ アメリア メリア しょうくしゃ

IS We prove $P(n) \rightarrow P(n+1)$. We use that $\frac{1}{d_n} = \frac{1}{3d_n/2} + \frac{1}{3d_n}$. Since $d_n \equiv 0$, $3d_n/2 \in \mathbb{N}$.

IB d = 3. $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$, $6 \equiv 0$. **IH** $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that $d_n \equiv 0$ and

$$l=rac{1}{d_1}+\cdots+rac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n+1)$. We use that $\frac{1}{d_n} = \frac{1}{3d_n/2} + \frac{1}{3d_n}$. Since $d_n \equiv 0$, $3d_n/2 \in \mathbb{N}$.

$$1 = \frac{1}{d_1} + \dots + \frac{1}{d_n} = \frac{1}{d_1} + \dots + \frac{1}{d_{n-1}} + \frac{1}{3d_n/2} + \frac{1}{3d_n}.$$

Also NEED that the last number is $\equiv 0$. It is since $3d_n \equiv d_n \equiv 0$.

・ロト・西ト・モン・モー ひゃぐ

Proof Four. A Different Approach

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

IS We prove $P(n) \rightarrow P(n+1)$.

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=rac{1}{d_1}+\dots+rac{1}{d_n}.$$
 IS We prove $P(n) o P(n+1).$

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=rac{1}{d_1}+\cdots+rac{1}{d_n}.$$

IS We prove $P(n) o P(n+1).$
 $1=rac{1}{d_1}+\cdots+rac{1}{d_n}.$

$$\frac{1}{2} = \frac{1}{2d_1} + \dots + \frac{1}{2d_n}.$$

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=rac{1}{d_1}+\dots+rac{1}{d_n}.$$
 IS We prove $P(n) o P(n+1).$
 $1=rac{1}{d_1}+\dots+rac{1}{d_n}$

$$1 = \frac{1}{d_1} + \dots + \frac{1}{d_n}.$$
$$\frac{1}{2} = \frac{1}{2d_1} + \dots + \frac{1}{2d_n}.$$
$$1 = \frac{1}{2} + \frac{1}{2d_1} + \dots + \frac{1}{2d_n}.$$