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INTRO AND BASIC SEQUENCE 
PROBLEMS



• Suppose that we want to prove that a proposition 𝑃𝑃(𝑛𝑛) is true for all 
natural numbers 𝑛𝑛.

The Idea Behind Induction



The Idea Behind Induction

• Suppose that we want to prove that a proposition 𝑃𝑃(𝑛𝑛) is true for all 
natural numbers 𝑛𝑛.

• We will prove two separate things:



The Idea Behind Induction

• Suppose that we want to prove that a proposition 𝑃𝑃(𝑛𝑛) is true for all 
natural numbers 𝑛𝑛.

• We will prove two separate things:
1. For 𝑛𝑛 = 0, 𝑃𝑃(𝑛𝑛) is true



The Idea Behind Induction

• Suppose that we want to prove that a proposition 𝑃𝑃(𝑛𝑛) is true for all 
natural numbers 𝑛𝑛.

• We will prove two separate things:
1. For 𝑛𝑛 = 0, 𝑃𝑃(𝑛𝑛) is true (simplifiable to “𝑃𝑃(0) is true”).



The Idea Behind Induction

• Suppose that we want to prove that a proposition 𝑃𝑃(𝑛𝑛) is true for all 
natural numbers 𝑛𝑛.

• We will prove two separate things:
1. 𝑃𝑃 0 is true



The Idea Behind Induction

• Suppose that we want to prove that a proposition 𝑃𝑃(𝑛𝑛) is true for all 
natural numbers 𝑛𝑛.

• We will prove two separate things:
1. 𝑃𝑃(0) is true.
2. For all  𝑛𝑛 ≥ 1, 𝑃𝑃 𝑛𝑛 ⇒ P(n + 1)



The Induction Principle

• From
• Base Case (BC): P(0)
• Induction Step (IS): ∀𝑛𝑛 ≥ 0,𝑃𝑃 𝑛𝑛 ⟹ 𝑃𝑃(𝑛𝑛 + 1)

• We can deduce ∀𝑛𝑛 ≥ 0, 𝑃𝑃(𝑛𝑛).



The Induction Principle

• From
• Base Case (BC): P(0)
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• Why does the Induction Principle Work?



The Induction Principle
• From

• Base Case (BC): P(0)
• Induction Step (IS): ∀𝑛𝑛 ≥ 0,𝑃𝑃 𝑛𝑛 ⟹ 𝑃𝑃(𝑛𝑛 + 1)

• We can deduce ∀𝑛𝑛 ≥ 0, 𝑃𝑃(𝑛𝑛).
• Why does the Induction Principle Work?
• Lets say you have the BC and the IS. You want to know if P(17) is true.
• You have

• 𝑃𝑃(0)
• 𝑃𝑃(0) ⇒ 𝑃𝑃(1)
• 𝑃𝑃(1) ⇒ 𝑃𝑃(2)
• ⋮
• 𝑃𝑃(16) ⇒ 𝑃𝑃(17)

• Hence you have P(17)



More Succinctly

• If you have
• BC: 𝑃𝑃(0)
• IS: ∀𝑛𝑛 ≥ 0,𝑃𝑃(𝑛𝑛) ⟹ 𝑃𝑃(𝑛𝑛 + 1)

• Then for any 𝑛𝑛 ≥ 0, one can construct a proof of 𝑃𝑃(𝑛𝑛).
• Hence for any 𝑛𝑛 ≥ 0,𝑃𝑃(𝑛𝑛) is true.



How We’ll Make It Work

1. Inductive base: We will prove (explicitly, no matter how dumb it may 
sometimes seem) that 𝑃𝑃(0) is true.



How We’ll Make It Work

1. Inductive base: We will prove (explicitly, no matter how dumb it may 
sometimes seem) that 𝑃𝑃(0) is true

2. Inductive hypothesis: We will assume that, for 𝑛𝑛 ≥ 0, 𝑃𝑃(𝑛𝑛) holds.



How We’ll Make It Work

1. Inductive base: We will prove (explicitly, no matter how dumb it may 
sometimes seem) that 𝑃𝑃(0) is true

2. Inductive hypothesis: We will assume that, for 𝑛𝑛 ≥ 0, 𝑃𝑃(𝑛𝑛) holds.
3. Inductive step: We will prove that if 𝑃𝑃(𝑛𝑛) holds, then 𝑃𝑃 𝑛𝑛 + 1 holds.



How We’ll Make It Work

1. Inductive base: We will prove (explicitly, no matter how dumb it 
may sometimes seem) that 𝑃𝑃(0) is true

2. Inductive hypothesis: We will assume that, for 𝑛𝑛 ≥ 0, 𝑃𝑃(𝑛𝑛) holds.
3. Inductive step: We will prove that if 𝑃𝑃(𝑛𝑛) holds, then 𝑃𝑃 𝑛𝑛 + 1

holds.
• So everything falls into place!



SUM PROBLEMS

�
𝑖𝑖=0

𝑛𝑛

𝑓𝑓(𝑛𝑛)



The Gaussian Sum

• We will prove that the sum of the first 𝑛𝑛 numbers is equal to 𝑛𝑛(𝑛𝑛+1)
2

.

• Symbolically:

1 + 2 + 3 + ⋯+ (𝑛𝑛 − 1) + 𝑛𝑛 =
𝑛𝑛(𝑛𝑛 + 1)

2

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 =
𝑛𝑛(𝑛𝑛 + 1)

2



Inductive Base

• For 𝑛𝑛 = 0, we will prove that 𝑃𝑃(0) holds

�
𝑖𝑖=1

0

𝑖𝑖 =
0(0 + 1)

2

• LHS: ∑𝑖𝑖=10 𝑖𝑖 = 0 (recall this fact from our sequences lecture)

• RHS: 0(0+1)
2

= 0
• Since LHS = RHS for 𝑛𝑛 = 0, 𝑃𝑃 0 has been proven true.

Remember: 𝑃𝑃(𝑛𝑛) is

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 =
𝑛𝑛(𝑛𝑛 + 1)

2



Inductive Hypothesis

• For 𝑛𝑛 ≥ 0, we assume that 𝑃𝑃(𝑛𝑛) is true: 

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 =
𝑛𝑛(𝑛𝑛 + 1)

2

• Inductive Hypothesis done!

So, we assume that

𝑃𝑃 𝑛𝑛 ⇔�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 =
𝑛𝑛(𝑛𝑛 + 1)

2
is true for an n≥ 0



Inductive Step

• Given that 𝑃𝑃(𝑛𝑛) is true, we will prove that 𝑃𝑃(𝑛𝑛 + 1) is true.

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 =
𝑛𝑛(𝑛𝑛 + 1)

2
⇒ �

𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 =
(𝑛𝑛 + 1)(𝑛𝑛 + 2)

2



Inductive Step

• Given that 𝑃𝑃(𝑛𝑛) is true, we will prove that 𝑃𝑃(𝑛𝑛 + 1) is true.

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 =
𝑛𝑛(𝑛𝑛 + 1)

2
⇒ �

𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 =
(𝑛𝑛 + 1)(𝑛𝑛 + 2)

2

Just adding 1 to 𝒏𝒏

Just adding 1 to n+𝟏𝟏



Inductive Step

• Given that 𝑃𝑃(𝑛𝑛) is true, we will prove that 𝑃𝑃(𝑛𝑛 + 1) is true.

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 =
𝑛𝑛(𝑛𝑛 + 1)

2
⇒ �

𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 =
(𝑛𝑛 + 1)(𝑛𝑛 + 2)

2

Just adding 1 to 𝒏𝒏

Just adding 1 to n+𝟏𝟏

This is our goal!



Inductive Step, contd.

• Starting from the LHS of the relation to prove, we have:

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 = 1 + 2 + ⋯+ 𝑛𝑛 + (𝑛𝑛 + 1)

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 =
(𝑛𝑛 + 1)(𝑛𝑛 + 2)

2



Inductive Step, contd.

• Starting from the LHS of the relation to prove, we have:

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 = 1 + 2 + ⋯+ 𝑛𝑛 + 𝑛𝑛 + 1 = �
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 + 𝑛𝑛 + 1 (1)

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 =
(𝑛𝑛 + 1)(𝑛𝑛 + 2)

2



Inductive Step, contd.

• Starting from the LHS of the relation to prove, we have:

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 = 1 + 2 + ⋯+ 𝑛𝑛 + 𝑛𝑛 + 1 = �
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 + 𝑛𝑛 + 1 (1)

• From the Inductive Hypothesis, we have that

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 =
𝑛𝑛(𝑛𝑛 + 1)

2
(2)

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 =
(𝑛𝑛 + 1)(𝑛𝑛 + 2)

2



Inductive Step, contd.

• Starting from the LHS of the relation to prove, we have:

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 = 1 + 2 + ⋯+ 𝑛𝑛 + 𝑛𝑛 + 1 = �
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 + 𝑛𝑛 + 1 (1)

• From the Inductive Hypothesis, we have that

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 =
𝑛𝑛(𝑛𝑛 + 1)

2
(2)

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 =
(𝑛𝑛 + 1)(𝑛𝑛 + 2)

2



Inductive Step, contd.

• Starting from the LHS of the relation to prove, we have:

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 = 1 + 2 + ⋯+ 𝑛𝑛 + 𝑛𝑛 + 1 = �
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 + 𝑛𝑛 + 1 (1)

• From the Inductive Hypothesis, we have that

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 =
𝑛𝑛(𝑛𝑛 + 1)

2
(2)

• Substituting (2) into (1) yields (next slide):

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 =
(𝑛𝑛 + 1)(𝑛𝑛 + 2)

2



Inductive Step, contd.

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 =
𝑛𝑛(𝑛𝑛 + 1)

2
+ 𝑛𝑛 + 1 =

𝑛𝑛(𝑛𝑛 + 1)
2

+
2(𝑛𝑛 + 1)

2
=

(𝑛𝑛 + 2)(𝑛𝑛 + 1)
2

= 𝑅𝑅𝑅𝑅𝑅𝑅



Inductive Step, contd.

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 =
𝑛𝑛(𝑛𝑛 + 1)

2
+ 𝑛𝑛 + 1 =

𝑛𝑛(𝑛𝑛 + 1)
2

+
2(𝑛𝑛 + 1)

2
=

(𝑛𝑛 + 2)(𝑛𝑛 + 1)
2

= 𝑅𝑅𝑅𝑅𝑅𝑅

• So, when 𝑃𝑃 𝑛𝑛 is true, 𝑃𝑃(𝑛𝑛 + 1) was also proven true. 
• We conclude that 𝑃𝑃(𝑛𝑛) is true ∀𝑛𝑛 ≥ 0.
• WE ARE DONE. 



Here’s Another!

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖2 =
𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)

6



Inductive Base

• For 𝑛𝑛 = 0, LHS = ∑𝑖𝑖=10 𝑖𝑖2 = 0

• RHS = 0(0+1)(2∗0+1)
2

= 0
• Since LHS = RHS, 𝑃𝑃(0) holds and we are done.



Inductive Base

• For 𝑛𝑛 = 0, LHS = ∑𝑖𝑖=10 𝑖𝑖2 = 0

• RHS = 0(0+1)(2∗0+1)
2

= 0
• Since LHS = RHS, 𝑃𝑃(0) holds and we are done.

• You could also start from 𝑛𝑛 = 1! LHS = RHS in both cases
• 𝑛𝑛 = 0 sometimes makes the math easier (RHS in this case)



Inductive Hypothesis

• Suppose that 𝑛𝑛 ≥ 0. (Or 1 in the alternative scenario)
• We will then assume 𝑃𝑃(𝑛𝑛), i.e:

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖2 =
𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)

6



Inductive Step

• We will now attempt to prove 𝑃𝑃(𝑛𝑛 + 1), i.e

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖2 =
(𝑛𝑛 + 1)(𝑛𝑛 + 2)(2𝑛𝑛 + 3)

6

Careful with 
factoring please!!!



Inductive Step

• We will now attempt to prove 𝑃𝑃(𝑛𝑛 + 1), i.e

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖2 =
(𝑛𝑛 + 1)(𝑛𝑛 + 2)(2𝑛𝑛 + 3)

6

• By leveraging associativity of sum, the LHS can be written as follows:

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖2 = �
𝑖𝑖=1

𝑛𝑛

𝑖𝑖2 + 𝑛𝑛 + 1 2

Careful with 
factoring please!!!



Inductive Step

• We will now attempt to prove 𝑃𝑃(𝑛𝑛 + 1), i.e

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖2 =
(𝑛𝑛 + 1)(𝑛𝑛 + 2)(2𝑛𝑛 + 3)

6

• By leveraging associativity of sum, the LHS can be written as follows:

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖2 = �
𝑖𝑖=1

𝑛𝑛

𝑖𝑖2 + 𝑛𝑛 + 1 2

Careful with 
factoring please!!!

We can apply the IH here!



Inductive Step
• By IH, we can now write: 

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖2 =
𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)

6
+ 𝑛𝑛 + 1 2



Inductive Step
• By IH, we can now write: 

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖2 =
𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)

6
+ 𝑛𝑛 + 1 2

• Remember: we want this to be equal to

(𝑛𝑛+1)(𝑛𝑛+2)(2𝑛𝑛+3)
6

• We will fearlessly manipulate the algebra until it does!



Inductive Step - Algebra

𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)
6

+ 𝑛𝑛 + 1 2 =
𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)

6
+

6 𝑛𝑛 + 1 2

6

=
𝑛𝑛 + 1 [𝑛𝑛 2𝑛𝑛 + 1 + 6(𝑛𝑛 + 1)]

6
=

𝑛𝑛 + 1 [2𝑛𝑛2 + 7𝑛𝑛 + 6]
6



Inductive Step - Algebra

𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)
6

+ 𝑛𝑛 + 1 2 =
𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)

6
+

6 𝑛𝑛 + 1 2

6

=
𝑛𝑛 + 1 [𝑛𝑛 2𝑛𝑛 + 1 + 6(𝑛𝑛 + 1)]

6
=

𝑛𝑛 + 1 [2𝑛𝑛2 + 7𝑛𝑛 + 6]
6

• If only we could prove that 2𝑛𝑛2 + 7𝑛𝑛 + 6 = (𝑛𝑛 + 2)(2𝑛𝑛 + 3), we’d 
be done!



Inductive Step - Algebra

𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)
6

+ 𝑛𝑛 + 1 2 =
𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)

6
+

6 𝑛𝑛 + 1 2

6

=
𝑛𝑛 + 1 [𝑛𝑛 2𝑛𝑛 + 1 + 6(𝑛𝑛 + 1)]

6
=

𝑛𝑛 + 1 [2𝑛𝑛2 + 7𝑛𝑛 + 6]
6

• If only we could prove that 2𝑛𝑛2 + 7𝑛𝑛 + 6 = (𝑛𝑛 + 2)(2𝑛𝑛 + 3), we’d 
be done!

• But…. 𝑛𝑛 + 2 2𝑛𝑛 + 3 = 2𝑛𝑛2 + 3𝑛𝑛 + 4𝑛𝑛 + 6 = 2𝑛𝑛2 + 7𝑛𝑛 + 6! 
• So we’re done.



Sums of Powers of 2

• Prove that the sum of the first 𝑛𝑛 terms of a geometric sequence with  
𝑎𝑎1 = 1 is equal to 2𝑛𝑛 −1.



Sums of Powers of 2

• Prove that the sum of the first 𝑛𝑛 terms of a geometric sequence with  
𝑎𝑎1 = 1 is equal to 2𝑛𝑛 −1.

• Symbolically:

�
𝑖𝑖=0

𝑛𝑛−1

2𝑖𝑖 = 2𝑛𝑛 − 1



Proof

• Proof : We attempt to prove 𝑃𝑃 𝑛𝑛 , ∀𝑛𝑛 ∈ ℕ . We proceed via 
induction on 𝑛𝑛.



Proof

• Proof : We attempt to prove 𝑃𝑃 𝑛𝑛 , ∀𝑛𝑛 ∈ ℕ . We proceed via 
induction on 𝑛𝑛.

• Inductive base: We attempt to prove 𝑃𝑃 1 .

𝑃𝑃 1 : ∑𝑖𝑖=01−12𝑖𝑖 = 20 − 1 ⇔ 0 = 0

So 𝑃𝑃(1) is true.



Proof

• Proof : We attempt to prove 𝑃𝑃 𝑛𝑛 , ∀𝑛𝑛 ∈ ℕ . We proceed via induction on 𝑛𝑛.
• Inductive base: We attempt to prove 𝑃𝑃 1 .

𝑃𝑃 1 : ∑𝑖𝑖=01−1 2𝑖𝑖 = 20 − 1 ⇔ 0 = 0

So 𝑃𝑃(1) is true.

• Inductive hypothesis: Suppose 𝑛𝑛 ≥ 0. We assume 𝑃𝑃 𝑛𝑛 , i.e

�
𝑖𝑖=0

𝑛𝑛−1

2𝑖𝑖 = 2𝑛𝑛 − 1



Proof (contd.)

• Inductive step: We will attempt to prove 𝑃𝑃 𝑛𝑛 + 1 , i.e

�
𝑖𝑖=0

𝑛𝑛

2𝑖𝑖 = 2𝑛𝑛+1 − 1

From the LHS to the RHS:

𝐿𝐿𝑅𝑅𝑅𝑅 = �
𝑖𝑖=0

𝑛𝑛

2𝑖𝑖 = �
𝑖𝑖=0

𝑛𝑛−1

2𝑖𝑖 + 2𝑛𝑛 = 2𝑛𝑛 − 1 + 2𝑛𝑛 = 2(2𝑛𝑛) − 1 = 2𝑛𝑛+1 − 1= RHS □

By the IH

𝑛𝑛 + 1 − 1



Sums of Powers of m

• Prove that the sum of the first 𝑛𝑛 terms of a geometric sequence with 
𝑚𝑚 ∈ (ℝ− 1 ) and 𝑎𝑎1 = 1 is equal to 𝑚𝑚

𝑛𝑛 −1
𝑚𝑚 −1

.



Sums of Powers of m

• Prove that the sum of the first 𝑛𝑛 terms of a geometric sequence with 
𝑚𝑚 ∈ (ℝ− 1 ) and 𝑎𝑎1 = 1 is equal to 𝑚𝑚

𝑛𝑛 −1
𝑚𝑚 −1

.
• Symbolically:

�
𝑖𝑖=0

𝑛𝑛−1

𝑚𝑚𝑖𝑖 =
𝑚𝑚𝑛𝑛 − 1
𝑚𝑚 − 1



Proof

• Proof : We attempt to prove 𝑃𝑃 𝑛𝑛 , ∀𝑛𝑛 ∈ ℕ . We proceed via 
induction on 𝑛𝑛.



Proof

• Proof : We attempt to prove 𝑃𝑃 𝑛𝑛 , ∀𝑛𝑛 ∈ ℕ . We proceed via 
induction on 𝑛𝑛.

• Inductive base: We attempt to prove 𝑃𝑃 1 .

𝑃𝑃 1 : ∑𝑖𝑖=01−1𝑚𝑚𝑖𝑖 =𝑚𝑚1 −1
𝑚𝑚 −1

⇔ ∑𝑖𝑖=00 𝑚𝑚𝑖𝑖 =𝑚𝑚1 −1
𝑚𝑚 −1

⇔ 1 = 1
So 𝑃𝑃(1) is true.

Note: In the base case we are assuming 𝑚𝑚 ≠ 1



Proof

• Proof : We attempt to prove 𝑃𝑃 𝑛𝑛 , ∀𝑛𝑛 ∈ ℕ . We proceed via induction on 𝑛𝑛.
• Inductive base: We attempt to prove 𝑃𝑃 1 .

𝑃𝑃 1 : ∑𝑖𝑖=01−1𝑚𝑚𝑖𝑖 =𝑚𝑚1 −1
𝑚𝑚 −1

⇔ ∑𝑖𝑖=00 𝑚𝑚𝑖𝑖 =𝑚𝑚1 −1
𝑚𝑚 −1

⇔ 1 = 1
So 𝑃𝑃(1) is true.

Note: In the base case we are assuming 𝑚𝑚 ≠ 1

• Inductive hypothesis: Suppose 𝑛𝑛 ≥ 0. We assume 𝑃𝑃 𝑛𝑛 , i.e

�
𝑖𝑖=0

𝑛𝑛−1

𝑚𝑚𝑖𝑖 =
𝑚𝑚𝑛𝑛 − 1
𝑚𝑚 − 1



Proof (contd.)

• Inductive step: We will attempt to prove 𝑃𝑃 𝑛𝑛 + 1 , i.e

�
𝑖𝑖=0

𝑛𝑛

𝑚𝑚𝑖𝑖 =
𝑚𝑚𝑛𝑛+1 − 1
𝑚𝑚 − 1

From the LHS to the RHS:

𝐿𝐿𝑅𝑅𝑅𝑅

= �
𝑖𝑖=0

𝑛𝑛

𝑚𝑚𝑖𝑖 = �
𝑖𝑖=0

𝑛𝑛−1

𝑚𝑚𝑖𝑖 + 𝑚𝑚𝑛𝑛 =
𝑚𝑚𝑛𝑛 − 1
𝑚𝑚 − 1

+ 𝑚𝑚𝑛𝑛 =
𝑚𝑚 − 1 + 𝑚𝑚𝑛𝑛(𝑚𝑚 − 1)

𝑚𝑚 − 1
=
𝑚𝑚𝑛𝑛+1 − 1
𝑚𝑚 − 1

= RHS □

By the IH

𝑛𝑛 + 1 − 1



Base Cases

• It is standard to change your base cases to later in your index if the 
theorem you are trying to prove starts later



COIN PROBLEMS! 



A Coin Problem

• We will prove that every dollar amount ≥ 4 cents can be exclusively
paid for by 2 and/or 5 cent coins.



Theorem Expressed in Quantifiers

•All quantifiers implicitly assumed over ℕ.

∀𝑛𝑛 ≥ 4 ∃𝑛𝑛1,𝑛𝑛2 [𝑛𝑛 = 2𝑛𝑛1 + 5𝑛𝑛2]



Inductive Base

• The least amount of money we are required to prove the statement 
for is 4¢, so we will attempt to prove 𝑃𝑃(4). 



Inductive Base

• The least amount of money we are required to prove the statement 
for is 4¢, so we will attempt to prove 𝑃𝑃(4). 

• For 𝑛𝑛 = 4, we have 4¢. Since 4¢ = 2 × 2¢, we are done (we have 
shown that the amount of 4¢ can be exclusively paid for by using only 
2 and/or 5 cent coins)



Inductive Hypothesis

•Let n≥ 4.
•Assume 𝑃𝑃 𝑛𝑛 ⇔ ∃𝑛𝑛1,𝑛𝑛2 [𝑛𝑛 = 2𝑛𝑛1 + 5𝑛𝑛2]



Inductive Step

• We will prove that 𝑃𝑃 𝑛𝑛 ⇒ 𝑃𝑃 𝑛𝑛 + 1 , i.e that we can pay an amount 
of money equal to 𝑛𝑛 + 1 cents using only 2¢ or 5¢ coins. 



Inductive Step

• We will prove that 𝑃𝑃 𝑛𝑛 ⇒ 𝑃𝑃 𝑛𝑛 + 1 , i.e that we can pay an amount 
of money equal to 𝑛𝑛 + 1 cents using only 2¢ or 5¢ coins. 

• In terms of algebra, what we want to prove is:

(∃𝑛𝑛3,𝑛𝑛4 ∈ ℕ) [𝑛𝑛 + 1 = 2𝑛𝑛3 + 5𝑛𝑛4]

Different variables from IH!



• From the Inductive Hypothesis (IH), we have that for some specific 
positive integers 𝑛𝑛1 and 𝑛𝑛2:

𝑛𝑛 = 2𝑛𝑛1 + 5𝑛𝑛2

Inductive Step (contd.)



• From the Inductive Hypothesis (IH), we have that for some specific 
positive integers 𝑛𝑛1 and 𝑛𝑛2:

𝑛𝑛 = 2𝑛𝑛1 + 5𝑛𝑛2

1. Case #1:  𝑛𝑛1 ≥ 2
• I have at least two 2¢ coins, so I can take away two 2¢ coins and add 

one 
5¢ coin

Inductive Step (contd.)



• From the Inductive Hypothesis (IH), we have that for some specific positive 
integers 𝑛𝑛1 and 𝑛𝑛2:

𝑛𝑛 = 2𝑛𝑛1 + 5𝑛𝑛2

1. Case #1:  𝑛𝑛1 ≥ 2
• I have at least two 2¢ coins, so I can take away two 2¢ coins and add one 5 ¢ coin
• By adding 1 on both sides of the IH we obtain:

𝑛𝑛 + 1 = 2𝑛𝑛1 + 5𝑛𝑛2 + 1 = 2𝑛𝑛1 + 5𝑛𝑛2 + 5 − 2 ∗ 2 =
= 2𝑛𝑛1 − 4 + 5𝑛𝑛2 + 5 = 2 (𝑛𝑛1−2) + 5(𝑛𝑛2 + 1)= 2𝑛𝑛3 + 5𝑛𝑛4

Inductive Step (contd.)

𝑛𝑛3 𝑛𝑛4



• From the Inductive Hypothesis (IH), we have that for some specific positive 
integers 𝑛𝑛1 and 𝑛𝑛2:

𝑛𝑛 = 2𝑛𝑛1 + 5𝑛𝑛2

1. Case #1:  𝑛𝑛1 ≥ 2
• I have at least two 2¢ coins, so I can take away two 2¢ coins and add one 5 ¢ coin
• By adding 1 on both sides of the IH we obtain:

𝑛𝑛 + 1 = 2𝑛𝑛1 + 5𝑛𝑛2 + 1 = 2𝑛𝑛1 + 5𝑛𝑛2 + 5 − 2 ∗ 2 =
= 2𝑛𝑛1 − 4 + 5𝑛𝑛2 + 5 = 2 (𝑛𝑛1−2) + 5(𝑛𝑛2 + 1)= 2𝑛𝑛3 + 5𝑛𝑛4

Inductive Step (contd.)

𝑛𝑛1 − 2 ≥ 0 because 
𝑛𝑛1 ≥ 2 In ℕ by closure



2. Case #2: 𝑛𝑛2 ≥ 1
• I have at least one 5¢ coin so I can take away one 5¢ coin and add 

three 2¢ coins

Inductive Step



2. Case #2: 𝑛𝑛2 ≥ 1
• I have at least one 5¢ coin so I can take away one 5¢ coin and add 

three 2¢ coins
• By adding 1 on both sides of the IH we obtain:

𝑛𝑛 + 1 = 2𝑛𝑛1 + 5𝑛𝑛2 + 1 = 2𝑛𝑛1 + 5𝑛𝑛2 + 3 ∗ 2 − 5 =
= 2 (𝑛𝑛1+3) + 5(𝑛𝑛2 − 1)= 2𝑛𝑛3 + 5𝑛𝑛4

Inductive Step

𝑛𝑛3 𝑛𝑛4



2. Case #2: 𝑛𝑛2 ≥ 1
• I have at least one 5¢ coin so I can take away one 5¢ coin and add 

three 2¢ coins
• By adding 1 on both sides of the IH we obtain:

𝑘𝑘 + 1 = 2𝑘𝑘1 + 5𝑘𝑘2 + 1 = 2𝑘𝑘1 + 5𝑘𝑘2 + 3 ∗ 2 − 5 =
= 2(𝑛𝑛1 + 3) +5(𝑛𝑛2 − 1)= 2𝑛𝑛3 + 5𝑛𝑛4

Inductive Step

𝑛𝑛2 − 1 ≥ 0
because
𝑛𝑛2 ≥ 1

(𝑛𝑛1 + 3) ∈ ℕ
by closure



3. Case #3: (𝑛𝑛1≤ 1) ∧ (𝑛𝑛2 = 0)
• This case means that we have either 0 or 2¢ at our disposal.

Inductive Step



3. Case #3: (𝑛𝑛1≤ 1) ∧ (𝑛𝑛2 = 0)
• This case means that we have either 0 or 2¢ at our disposal.
• But this is not possible, since we want to prove the theorem only for 

values ≥ 4¢
• So we’re done. □

Inductive Step



A Coin Problem for You!

Prove to me that every dollar amount ≥ 20 cents can be 
exclusively paid for through combinations of 5-cent coins 
and 6-cent coins!

Go to Breakout Rooms



TREATING INEQUALITIES 



What if your theorem only holds when 
𝑛𝑛 ≥ 4?

• We want to compare 2𝑛𝑛 and 𝑛𝑛!.
𝑛𝑛 2𝑛𝑛 𝑛𝑛!
1 2 1
2 4 2
3 8 6
4 16 24



What if your theorem only holds when 
𝑛𝑛 ≥ 4?

• We want to compare 2𝑛𝑛 and 𝑛𝑛!.

• It seems like (∀ 𝑛𝑛 ≥ 4)[2𝑛𝑛 < 𝑛𝑛!]
• Our current Induction Principle cannot handle this!
• Don't Panic!

𝑛𝑛 2𝑛𝑛 𝑛𝑛!
1 2 1
2 4 2
3 8 6
4 16 24



Modified Induction Principle

• From
• Base Case (BC): 𝑃𝑃(𝑎𝑎)
• Induction Step (IS): ∀𝑛𝑛 ≥ 𝑎𝑎,𝑃𝑃(𝑛𝑛) ⟹ 𝑃𝑃(𝑛𝑛 + 1)



Modified Induction Principle

• From
• Base Case (BC): 𝑃𝑃(𝑎𝑎)
• Induction Step (IS): ∀𝑛𝑛 ≥ 𝑎𝑎,𝑃𝑃(𝑛𝑛) ⟹ 𝑃𝑃(𝑛𝑛 + 1)

• We can deduce
• ∀𝑛𝑛 ≥ 𝑎𝑎,𝑃𝑃(𝑛𝑛)



Modified Induction Principle

• From
• Base Case (BC): 𝑃𝑃(𝑎𝑎)
• Induction Step (IS): ∀𝑛𝑛 ≥ 𝑎𝑎,𝑃𝑃(𝑛𝑛) ⟹ 𝑃𝑃(𝑛𝑛 + 1)

• We can deduce
• ∀𝑛𝑛 ≥ 𝑎𝑎,𝑃𝑃(𝑛𝑛)

• Why does the Modified Induction Principle Work?
• Similar to who the original Induction Principle worked.



Here’s One with an Inequality!

• Prove that for all integers 𝑛𝑛 at least 4, 2𝑛𝑛 < 𝑛𝑛!
1. IB: We will prove 𝑃𝑃 4 ⇔ 24 < 4! Done.



Here’s One with an Inequality!

• Prove that for all integers 𝑛𝑛 at least 4, 2𝑛𝑛 < 𝑛𝑛!
1. IB: We will prove 𝑃𝑃 4 ⇔ 24 < 4! Done.
2. IH: For 𝑛𝑛 ≥ 4, we assume 𝑃𝑃 𝑛𝑛 , i.e 2𝑛𝑛 < 𝑛𝑛!



Here’s One with an Inequality!

• Prove that for all integers 𝑛𝑛 at least 4, 2𝑛𝑛 < 𝑛𝑛!
1. IB: We will prove 𝑃𝑃 4 ⇔ 24 < 4! Done.
2. IH: For 𝑛𝑛 ≥ 4, we assume 𝑃𝑃 𝑛𝑛 , i.e 2𝑛𝑛 < 𝑛𝑛!
3. IS: We will prove 𝑃𝑃 𝑛𝑛 ⇒ 𝑃𝑃(𝑛𝑛 + 1), i.e

(2𝑛𝑛< 𝑛𝑛!) ⇒ (2𝑛𝑛+1< 𝑛𝑛 + 1 !)



Inductive Step…

• Prove that for all integers 𝑛𝑛 at least 4, 2𝑛𝑛 < 𝑛𝑛!
1. IB: We will prove 𝑃𝑃 4 ⇔ 24 < 4! Done.
2. IH: For 𝑛𝑛 ≥ 4, we assume 𝑃𝑃 𝑛𝑛 , i.e 2𝑛𝑛 < 𝑛𝑛!
3. IS: We will prove 2𝑛𝑛+1 < 𝑛𝑛 + 1 !



Inductive Step…

• Prove that for all integers 𝑛𝑛 at least 4, 2𝑛𝑛 < 𝑛𝑛!
1. IB: We will prove 𝑃𝑃 4 ⇔ 24 < 4! Done.
2. IH: For 𝑛𝑛 ≥ 4, we assume 𝑃𝑃 𝑛𝑛 , i.e 2𝑛𝑛 < 𝑛𝑛!
3. IS: We will prove 2𝑛𝑛+1 < 𝑛𝑛 + 1 !

• From algebra, we have that 2𝑛𝑛+1 = 2𝑛𝑛 ⋅ 2 (1)



Inductive Step…

• Prove that for all integers 𝑛𝑛 at least 4, 2𝑛𝑛 < 𝑛𝑛!
1. IB: We will prove 𝑃𝑃 4 ⇔ 24 < 4! Done.
2. IH: For 𝑛𝑛 ≥ 4, we assume 𝑃𝑃 𝑛𝑛 , i.e 2𝑛𝑛 < 𝑛𝑛!
3. IS: We will prove 2𝑛𝑛+1 < 𝑛𝑛 + 1 !

• From algebra, we have that 2𝑛𝑛+1 = 2𝑛𝑛 ⋅ 2 (1)

• From the IH, we have that 2𝑛𝑛 < 𝑛𝑛!
2>0

2𝑛𝑛 ⋅ 2 < 𝑛𝑛! ⋅ 2 (2)



Inductive Step…

• Prove that for all integers 𝑛𝑛 at least 4, 2𝑛𝑛 < 𝑛𝑛!
1. IB: We will prove 𝑃𝑃 4 ⇔ 24 < 4! Done.
2. IH: For 𝑛𝑛 ≥ 4, we assume 𝑃𝑃 𝑛𝑛 , i.e 2𝑛𝑛 < 𝑛𝑛!
3. IS: We will prove 2𝑛𝑛+1 < 𝑛𝑛 + 1 !

• From algebra, we have that 2𝑛𝑛+1 = 2𝑛𝑛 ⋅ 2 (1)

• From the IH, we have that 2𝑛𝑛 < 𝑛𝑛!
2>0

2𝑛𝑛 ⋅ 2 < 𝑛𝑛! ⋅ 2 (2)

• Since n ≥ 4, we have that 2 < 𝑛𝑛 + 1
𝑛𝑛! > 0

𝑛𝑛! ⋅ 2 < 𝑛𝑛! 𝑛𝑛 + 1 (3)



Inductive Step…

• Prove that for all integers 𝑛𝑛 at least 4, 2𝑛𝑛 < 𝑛𝑛!
1. IB: We will prove 𝑃𝑃 4 ⇔ 24 < 4! Done.
2. IH: For 𝑛𝑛 ≥ 4, we assume 𝑃𝑃 𝑛𝑛 , i.e 2𝑛𝑛 < 𝑛𝑛!
3. IS: We will prove 2𝑛𝑛+1 < 𝑛𝑛 + 1 !

• From algebra, we have that 2𝑛𝑛+1 = 2𝑛𝑛 ⋅ 2 (1)

• From the IH, we have that 2𝑛𝑛 < 𝑛𝑛!
2>0

2𝑛𝑛 ⋅ 2 < 𝑛𝑛! ⋅ 2 (2)

• Since 𝑛𝑛 ≥ 4, we have that 2 < 𝑛𝑛 + 1
𝑛𝑛! > 0

𝑛𝑛! ⋅ 2 < 𝑛𝑛! 𝑛𝑛 + 1 (3)

• 2
(3)

2𝑛𝑛 ⋅ 2 < 𝑛𝑛 + 1 !⇔
1

2𝑛𝑛+1 < 𝑛𝑛 + 1 !
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