START

RECORDING

Circuits

CMSC250

- This is useful when we get to circuits
- What is AND, OR, and NOT?
- NOT = 1-x

X	$\sim \chi$
F	Τ
Т	F

X	1-x
0	1
1	0

- What is AND, OR, NOT?
- AND = xy

$\boldsymbol{\chi}$	У	$x \wedge y$	x	У	xy
F	F	F	0	0	0
F	Τ	F	0	1	0
Τ	F	F	1	0	0
Τ	Т	Τ	1	1	1

- What is AND, OR, and NOT?
- OR = x+y? NO!

${\mathcal X}$	У	$x \lor y$	X	у	x + y
F	F	F	0	0	0
F	Т	τ	0	1	1
Τ	F	τ	1	0	1
Τ	Т	Т	1	1	10

- What is AND, OR, and NOT?
- OR = x+y-xy

X	у	$x \lor y$	X	У	x + y	x + y - xy
F	F	F	0	0	0	0
F	Т	T	0	1	1	1
Τ	F	T	1	0	1	1
Τ	Т	Т	1	1	10	1

Circuits

- We can build circuits for addition, multiplication, division, bit shifting...
- Every logical operation we have learned (~,∧,∨) maps straightforwardly to a tiny piece of hardware called a *logical gate*.
- These gates connect to each other to make arbitrarily complicated circuits!

From a truth table to a formula

р	q	r	output
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

From a truth table to a formula

р	q	r	output
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

• Let us focus entirely on the rows that output 1!

р	q	r	output
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Focusing on the 1st row...

р	q	r	output
0	0	0	1

• Write a formula that is '1' only on inputs p =0, q = 0, r = 0.

р	q	r	output
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Focusing on the 1st row...

р	q	r	output
0	0	0	1

• Write a simple formula that is '1' only on inputs p =0, q = 0, r = 0.

 $\sim p \land \sim q \land \sim r$

р	q	r	output
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Focusing on the 4th row...

р	q	r	output
0	1	1	1

• Same deal

р	q	r	output
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Focusing on the 4th row...

р	q	r	output
0	1	1	1

• Same deal

 $\sim p \land q \land r$

р	q	r	output
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Focusing on the 5th row...

р	q	r	output
1	0	0	1

 $p \wedge \sim q \wedge \sim r$

р	q	r	output
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Focusing on the 8th row...

р	q	r	output
1	1	1	1

 $p \land q \land r$

How do we combine those simple formulae?

 $\sim p \land \sim q \land \sim r$

 ${\sim}p \wedge q \wedge r$

 $p \wedge \sim q \wedge \sim r$

 $p \land q \land r$

How do we combine those simple formulae?

	р	q	r	output
$(\sim p \land \sim q \land \sim r) \lor$	0	0	0	1
	0	0	1	0
$(\sim p \land q \land r) \lor$	0	1	0	0
	0	1	1	1
	1	0	0	1
$(p \land \sim q \land \sim r) \lor$	1	0	1	0
	1	1	0	0
$(p \land q \land r)$	1	1	1	1
$(P \land q \land r)$				

• Outputs 1 if and only if the truth table outputs 1!

How do we combine those simple formulae?

output

$(\sim p \land \sim q \land \sim r) \lor$	р	q	r
	0	0	0
	0	0	1
$(\sim p \land q \land r) \lor$	0	1	0
	0	1	1
	1	0	0
$(p \land \sim q \land \sim r) \lor$	1	0	1
	1	1	0
$(p \land q \land r)$	1	1	1
$(P \land Q \land I)$			

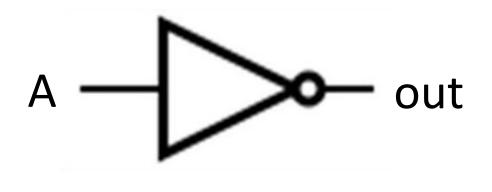
- Outputs 1 if and only if the truth table outputs 1!
- We want to do this in *hardware!*

Logical gates

- The smallest pieces of hardware that we will examine are called *logical gates.*
- Most gates for this course will take **bits** as inputs and will emit one **bit** as output. (Not all gates have this property)

• Those gates can connect to each other in various different ways in order to create more complex circuits

Our first gate



A	out
0	1
1	0

- This gate is known as the **inverter**.
- It corresponds **exactly** to the negation operation in propositional logic!
 - Where 1, set True.
 - Where 0, set False

Our second gate

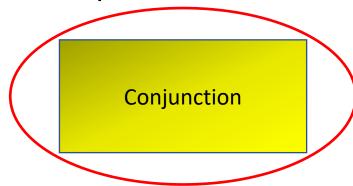
p	q	r
0	0	0
0	1	0
1	0	0
1	1	1

• Corresponds to:

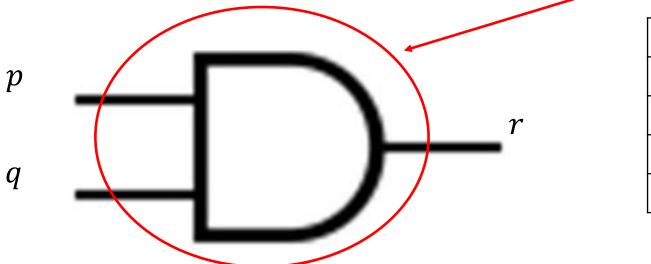
Our second gate (AND gate)

p	q	r
0	0	0
0	1	0
1	0	0
1	1	1

• Corresponds to:



Our second gate (AN<u>D</u> gate)



 p
 q
 r

 0
 0
 0

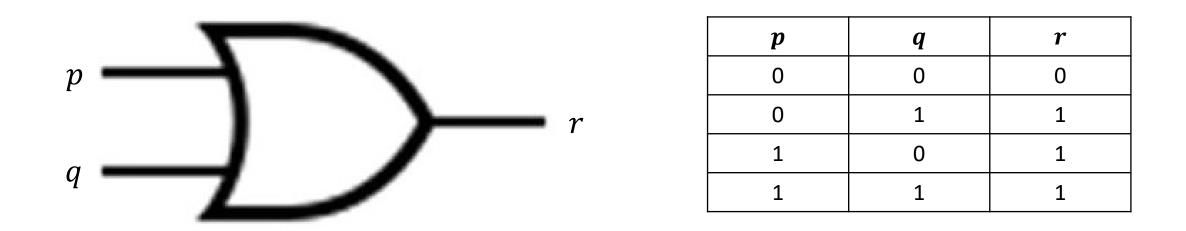
 0
 1
 0

 1
 0
 0

 1
 1
 1

• Corresponds to:

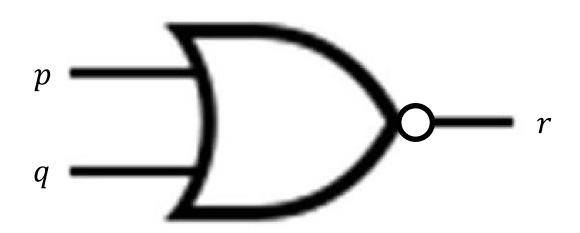
Our third gate (OR gate)



• Corresponds to logical disjunction (OR)

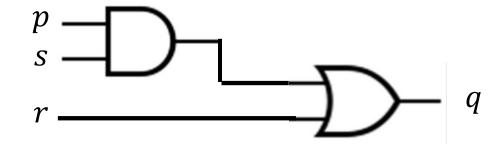
Our fourth and fifth gate (NAND and NOR gate)

p	q	r
0	0	1
0	1	1
1	0	1
1	1	0

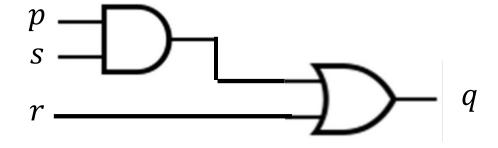


p	q	r
0	0	1
0	1	0
1	0	0
1	1	0

• Which boolean function does this circuit correspond to?

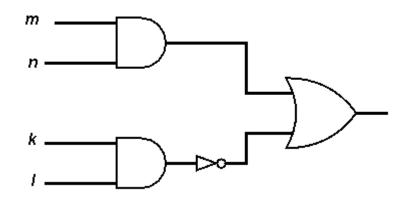


• Which boolean function does this circuit correspond to?

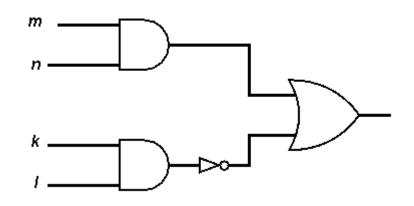


 $(p \land s) \lor r$

• And this?

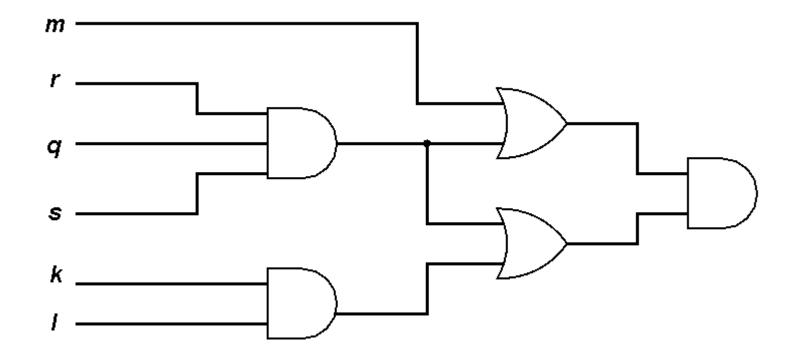


• And this?

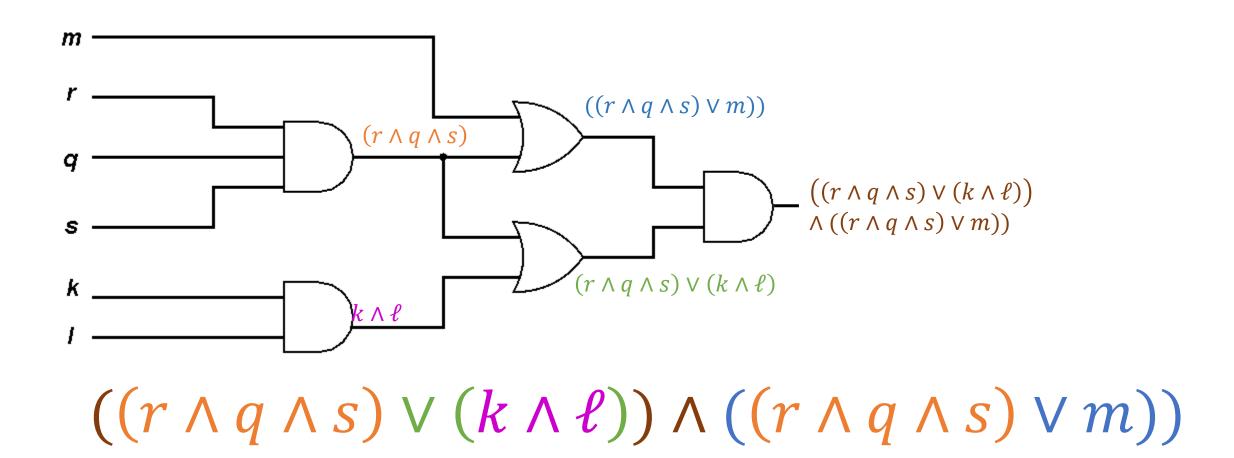


 $(m \land n) \lor (\sim (k \land l))$

And this?



And this?

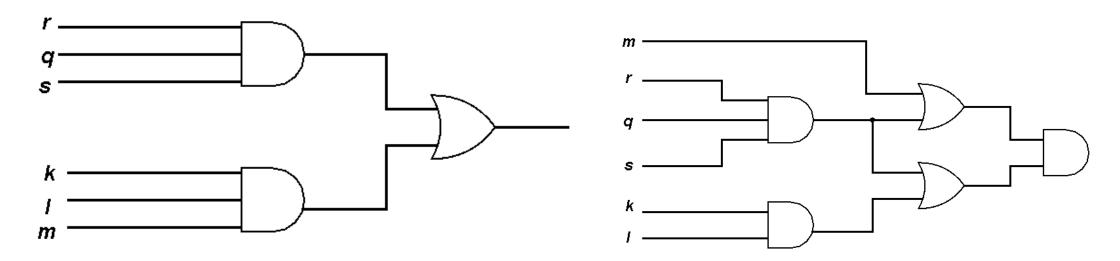


And this? Can we make this circuit *cheaper*? m r $((r \land q \land s) \lor m))$ $(r \land q \land s)$ q $((r \land q \land s) \lor (k \land \ell))$ $\wedge ((r \land q \land s) \lor m))$ S $(r \land q \land s) \lor (k \land \ell)$ k $k \wedge \ell$

 $((r \land q \land s) \lor (k \land \ell)) \land ((r \land q \land s) \lor m))$

Simplifying the circuit...

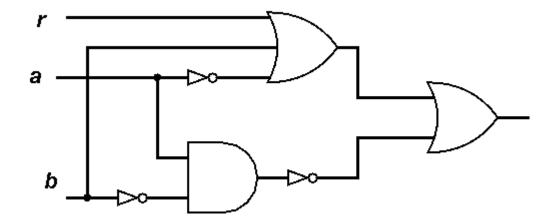
 $((r \land q \land s) \lor (k \land \ell)) \land ((r \land q \land s) \lor m)) \equiv (r \land q \land s) \lor ((k \land \ell) \land m)$



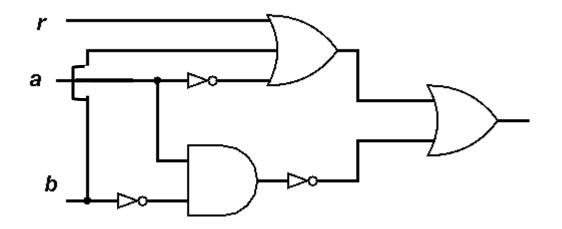
New circuit: Three gates

Old circuit: Five gates

1. Which logical expression is computed by the following circuit?



- 1. Which logical expression is computed by the following circuit?
- 2. *Simplify* the circuit as much as possible!



Coming back to our original formula...

 $(\sim p \land \sim q \land \sim r) \lor (\sim p \land q \land r) \lor (p \land \sim q \land \sim r) \lor (p \land q \land r)$

Coming back to our original formula...

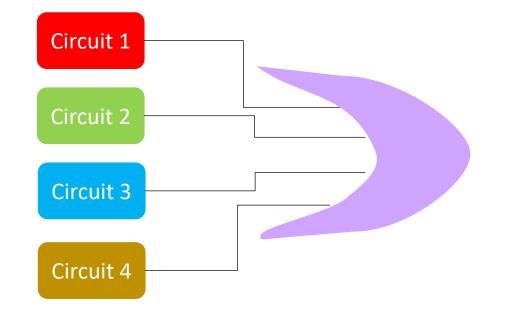
 $(\sim p \land \sim q \land \sim r) \lor (\sim p \land q \land r) \lor (p \land \sim q \land \sim r) \lor (p \land q \land r)$

• For each small formula we have a circuit, and we will combine with a 4-input OR gate!

Coming back to our original formula...

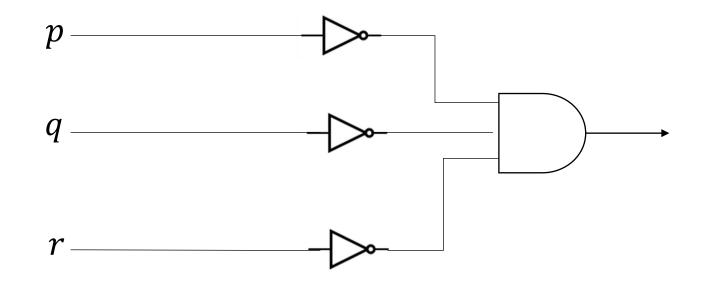
 $(\sim p \land \sim q \land \sim r) \lor (\sim p \land q \land r) \lor (p \land \sim q \land \sim r) \lor (p \land q \land r)$

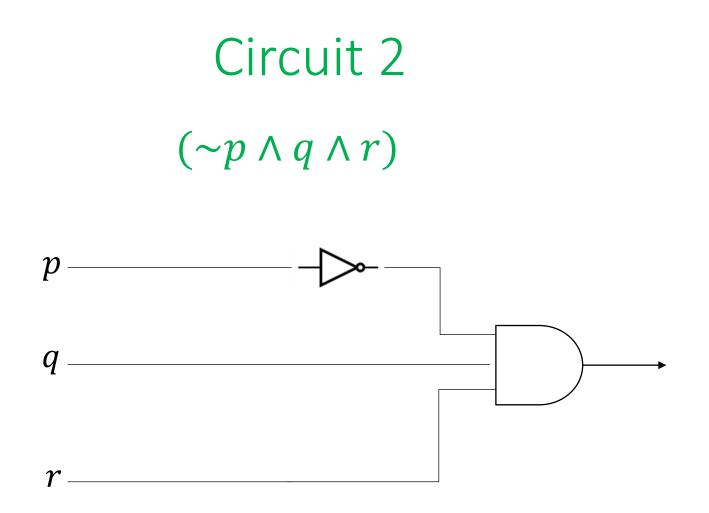
• For each small formula we have a circuit, and we will combine with a 4-input OR gate!



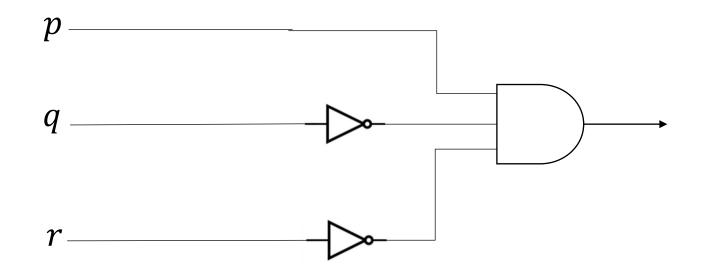
Circuit 1

$(\sim p \land \sim q \land \sim r)$

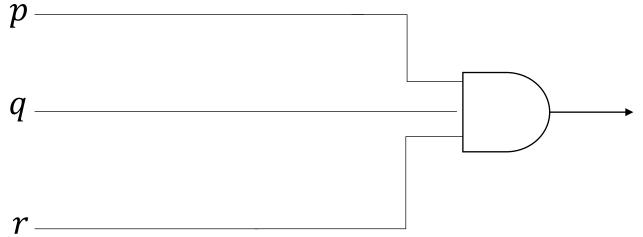




Circuit 3 $(p \land \sim q \land \sim r)$

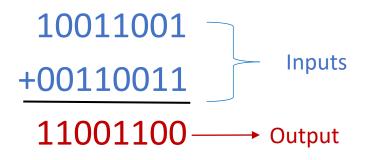


Circuit 4 ($p \land q \land r$)



Building Adder Circuits

- We want to build circuits that add arbitrarily large binary numbers.
- E.g



Half-Adder

• A half-adder is a circuit that adds two bits together!

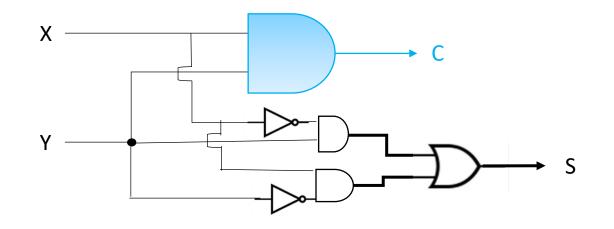
$$\frac{X}{Y}$$

- (Remember: *C* is the carry bit.)
- Let's try to build a circuit that computes both S and C!

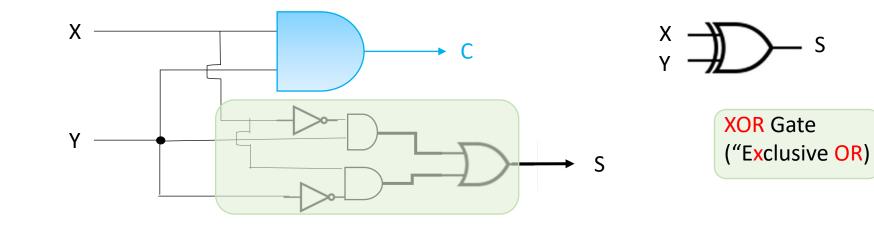
X	Y	S	С
0	0	?	?
0	1	?	?
1	0	?	?
1	1	?	?

X	Y	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

X	Y	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1



X	Y	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

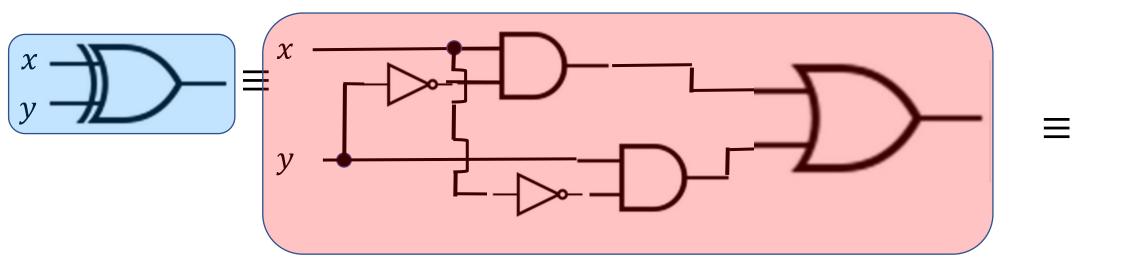


• First, let's convince ourselves that

 $(x \oplus y) \equiv (x \land (\sim y)) \lor ((\sim x) \land y) \equiv (x \lor y) \land (\sim (x \land y))$

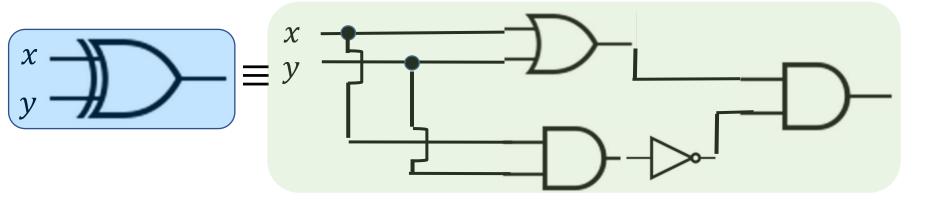
• First, let's convince ourselves that

 $(x \oplus y) \equiv (x \land (\sim y)) \lor ((\sim x) \land y) \equiv (x \lor y) \land (\sim (x \land y))$



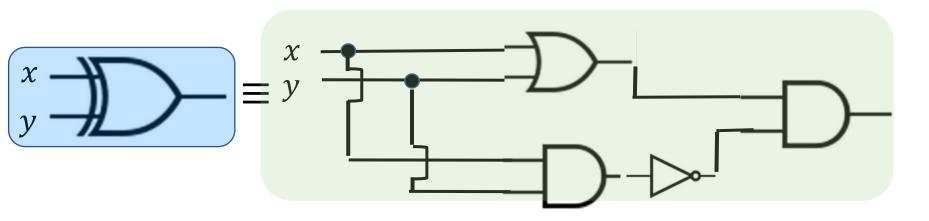
• First, let's convince ourselves that

 $(x \oplus y) \equiv (x \land (\sim y)) \lor ((\sim x) \land y) \equiv (x \lor y) \land (\sim (x \land y))$



• First, let's convince ourselves that

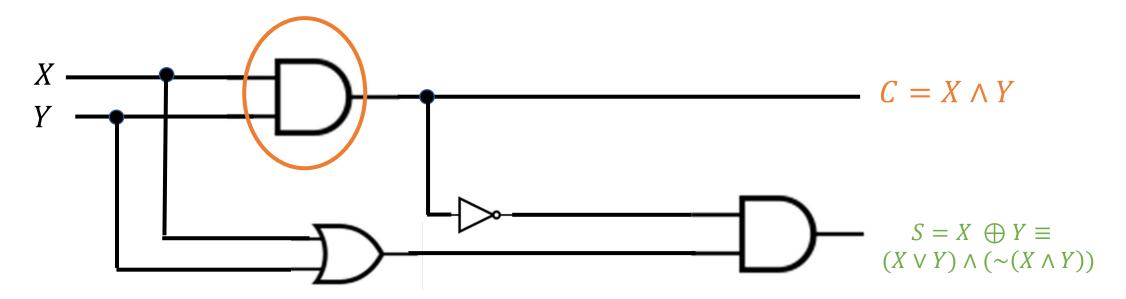
 $(x \oplus y) \equiv (x \land (\sim y)) \lor ((\sim x) \land y) \equiv (x \lor y) \land (\sim (x \land y))$



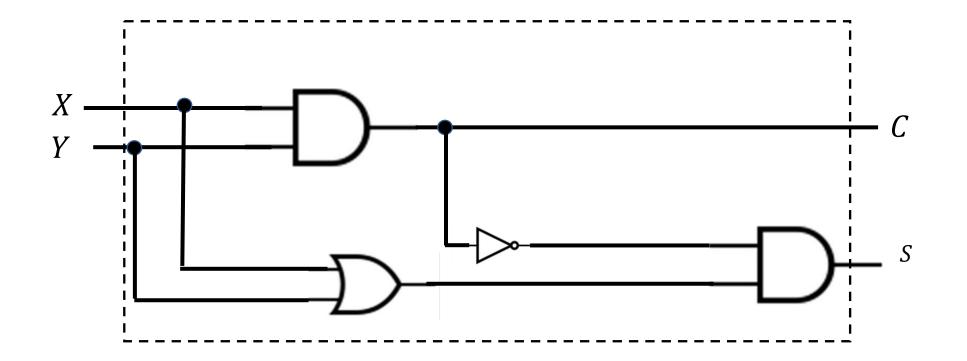
From **five** gates to **four**!

Optimizing Half Adder

- We can now optimize the Half Adder.
- We won't just use simplified XOR, but also leverage simplified XOR to <u>re-use</u> the AND gate used to compute the carry bit *C*!



Half Adder Abstraction



4 gates, instead of 6 for the previous one!

Half Adder Abstraction

Full-Adder

• Now, let's consider the complete case, where we want to build a circuit that computes the sum of two 2-digit binary numbers:

P Q +<u>W X</u> C S₁ S₂

• To do this, we also need the ability to add 3 digits, because:

ability t C_1 P Q + W X $C S_1 S_2$

Full-Adder

• Now, let's consider the complete case, where we want to build a circuit that computes the sum of two 2-digit binary numbers:

P Q +<u>W X</u> C S₁ S₂

Ρ

 $C S_1 S_2$

• To do this, we also need the ability to add 3 digits, because:

We will call a circuit that adds 3 bits a full adder

We could do the truth table....

PQ

+<u>WX</u>

					C	S1 S2
Р	Q	W	X	С	S ₁	S ₂
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

We could do the truth table....

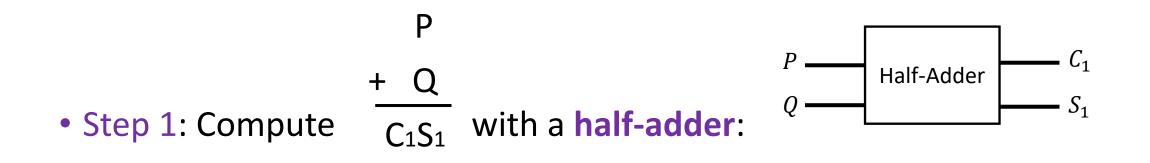
PQ

+<u>WX</u>

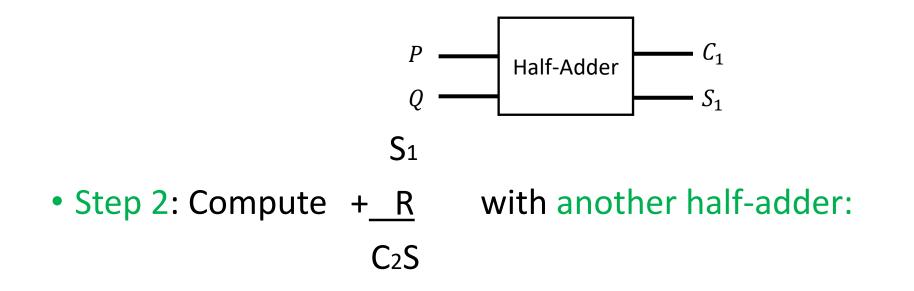
							<mark>C S1 S2</mark>	
Р	Q	W	X		С	S ₁	S ₂	
0	0	0	0					
0	0	0	1					
0	0	1	0					
0	0	1	1					
0	1	0	0					
0	1	0	1					
0	1	1	0		But it's time consuming and we are all busy people			
0	1	1	1					
1	0	0	0					
1	0	0	1					
1	0	1	0		are	ali busy	people	
1	0	1	1					
1	1	0	0					
1	1	0	1		L			
1	1	1	0					
1	1	1	1					

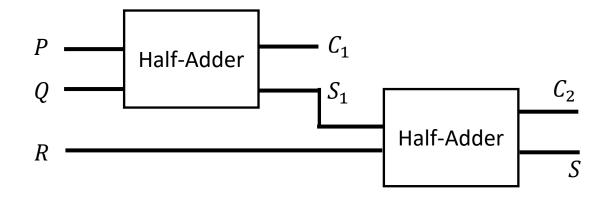
Constructing a Full-Adder in another way

 We need to build a circuit that computes the sum of 3 digits, e.g P + Q + R

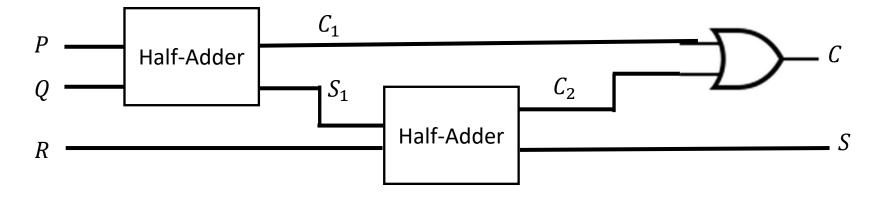


Constructing a Full Adder



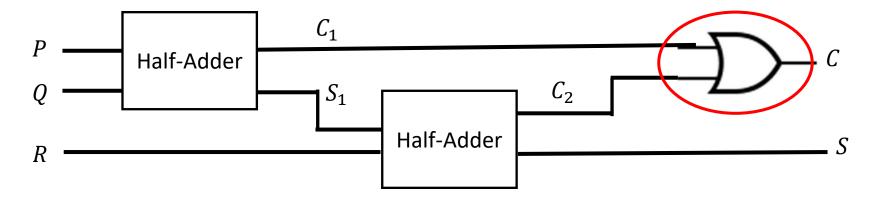


Constructing a full-adder



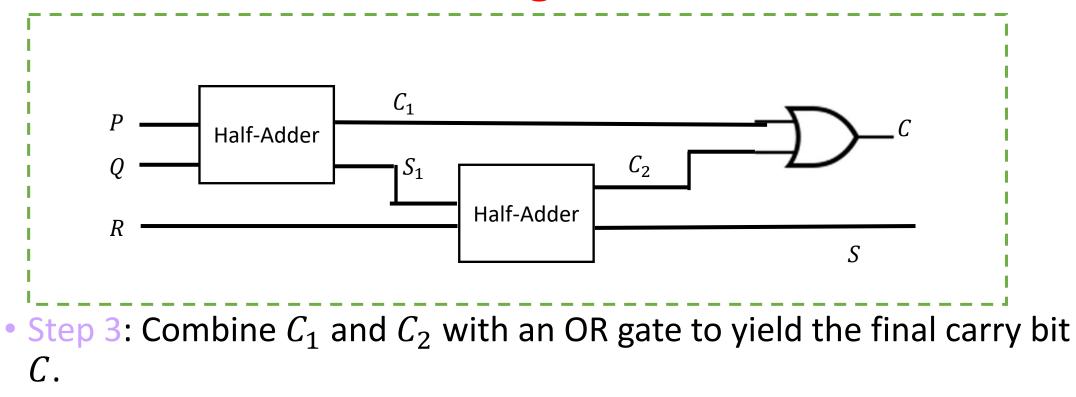
• Step 3: Combine C_1 and C_2 with an OR gate to yield the final carry bit C.

Constructing a full-adder



- Step 3: Combine C_1 and C_2 with an OR gate to yield the final carry bit C.
- Why did we choose an OR gate to combine the "intermediate" carries C₁ and C₂?

Constructing a full-adder



Abstraction time!

Full Adder Black Box

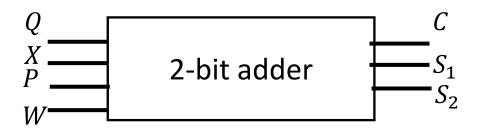
• 3 inputs, 2 outputs

2-bit adder

• However, **we still have not solved our original problem**, which is to construct a circuit that adds 2-bit numbers!

P Q + <u>W X</u> C S₁ S₂

• So, we need a circuit that takes 4 inputs and emits 3 outputs:

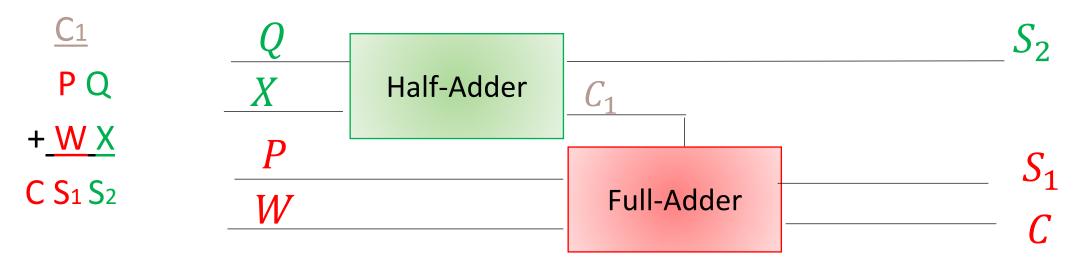


Constructing a 2-bit adder

• Step 1: Take care of the right-most column with a half-adder:

Constructing a 2-bit adder

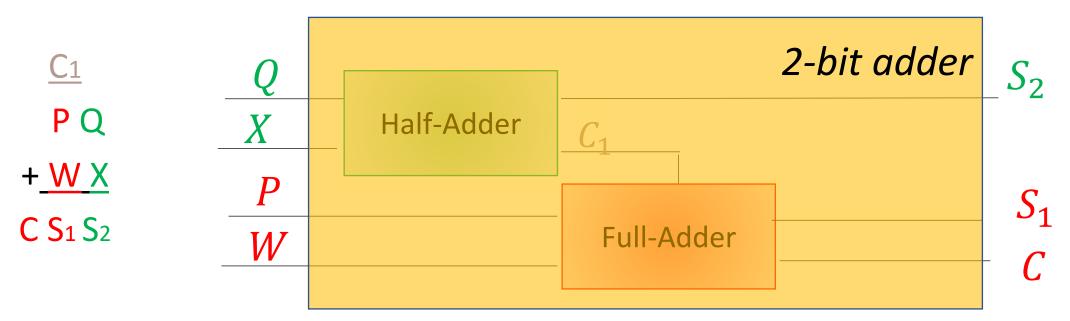
• Step 1: Take care of the right-most column with a half-adder:



 Step 2 (and final): Connect Half-Adder and new inputs to Full-adder appropriately to produce final circuit.

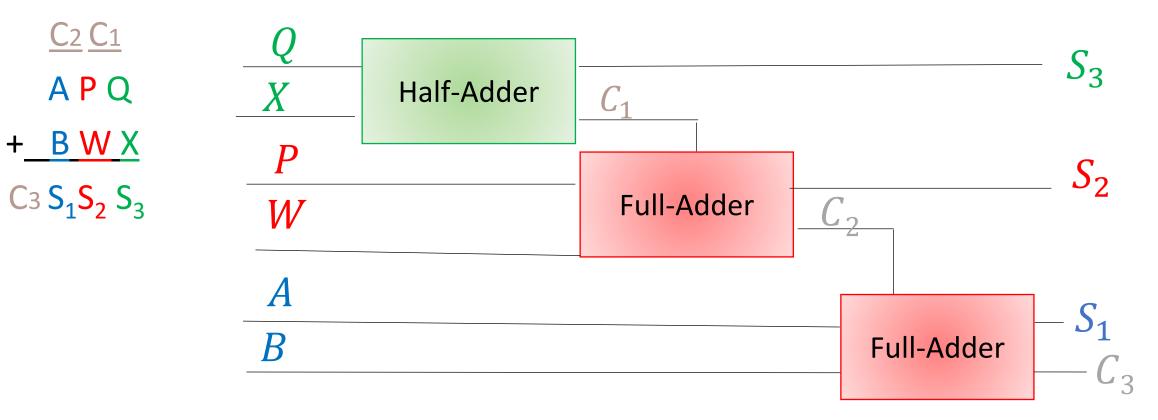
Constructing a 2-bit adder

• Step 1: Take care of the right-most column with a half-adder:



 Step 2 (and final): Connect Half-Adder and new inputs to Full-adder appropriately to produce final circuit.

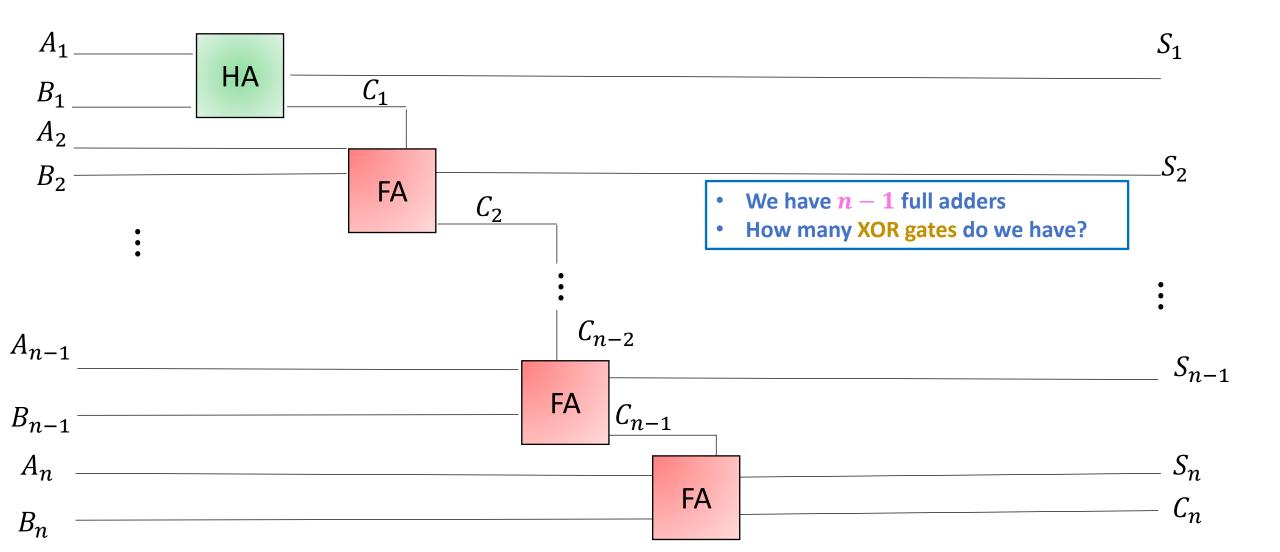
Constructing a 3-bit adder (messy)



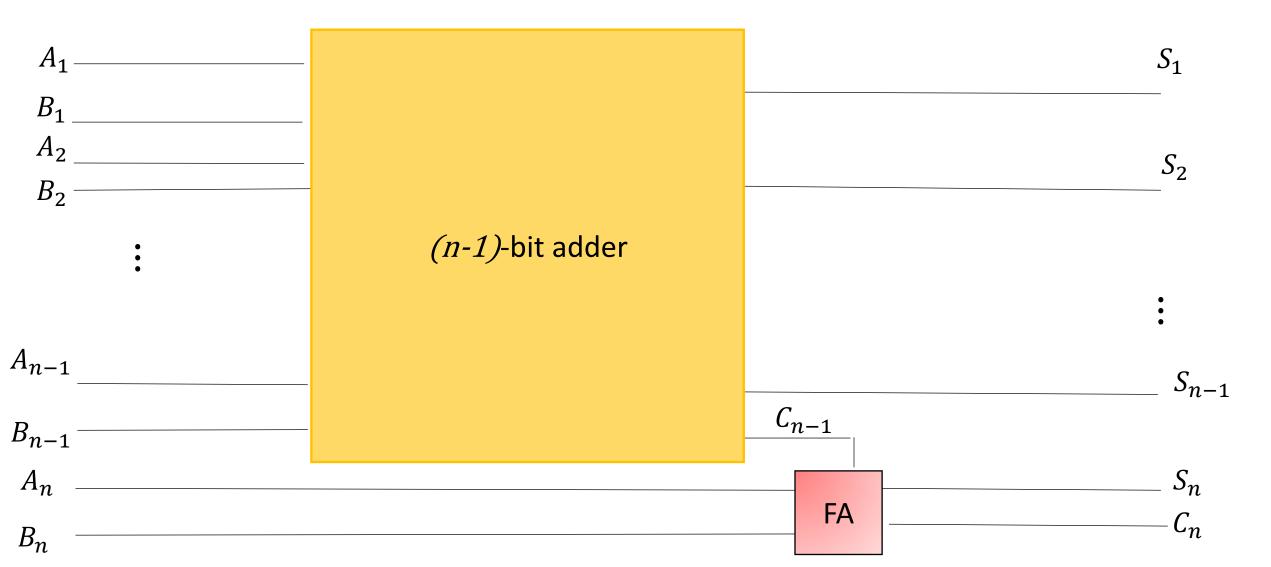
Constructing a 3-bit adder (neat)



Constructing an n-bit adder (messy)



Constructing an n-bit adder (neat)



Other numeric functions

- Addition (have done)
- Multiplication
- Division
- Primality test (test whether a number is prime)
- There are circuits for all of these!
 - Computers actually work this way at the base level: they consist of gates.

Fun exercise

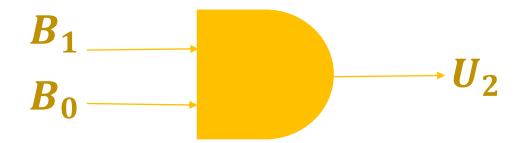
• Input: number in **binary**

B ₁	B ₀	<i>U</i> ₂	<i>U</i> ₁	U ₀
0	0	0	0	0
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

First micro-circuit

B ₁	B ₀	<i>U</i> ₂	<i>U</i> ₁	U ₀
0	0	0	0	0
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

 $\boldsymbol{U_2} = \boldsymbol{B_1} \wedge \boldsymbol{B_0}$

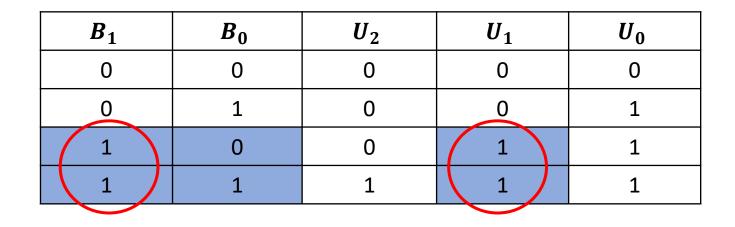


Second micro-circuit

B ₁	B ₀	<i>U</i> ₂	<i>U</i> ₁	U ₀
0	0	0	0	0
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

 $\boldsymbol{U}_1 = (\boldsymbol{B}_1 \wedge \boldsymbol{\sim} \boldsymbol{B}_0) \vee (\boldsymbol{B}_1 \wedge \boldsymbol{B}_0)$

Second micro-circuit



 $\boldsymbol{U}_1 = (\boldsymbol{B}_1 \wedge \boldsymbol{\sim} \boldsymbol{B}_0) \vee (\boldsymbol{B}_1 \wedge \boldsymbol{B}_0) = \boldsymbol{B}_1$

(from distributive law of conjunction over disjunction!)

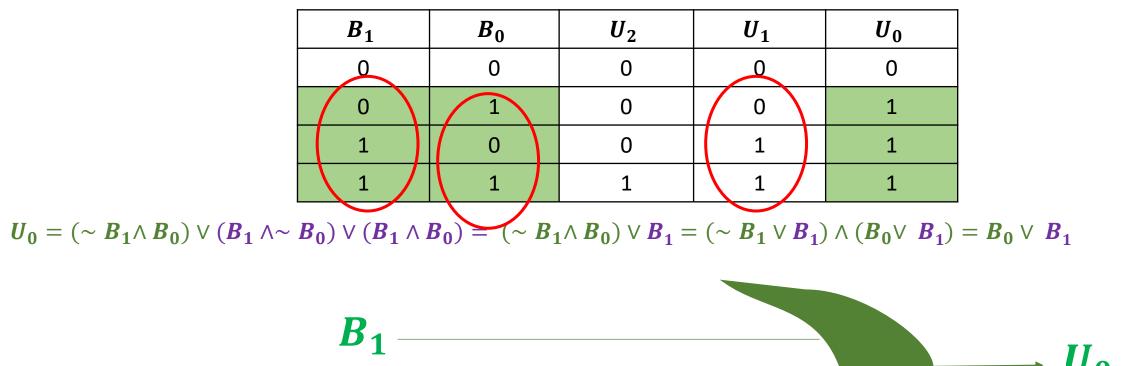
 $B_1 \longrightarrow U_1$

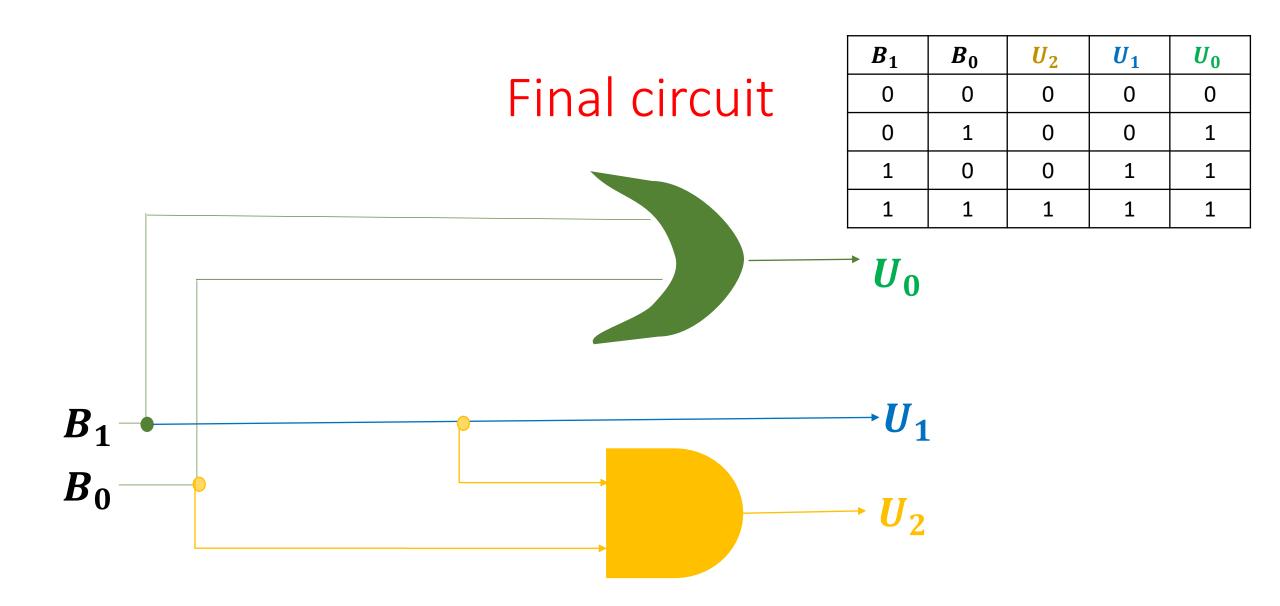
Third micro-circuit

B ₁	B ₀	<i>U</i> ₂	<i>U</i> ₁	U ₀
0	0	0	0	0
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

 $U_0 = (\sim B_1 \land B_0) \lor (B_1 \land \sim B_0) \lor (B_1 \land B_0)$

Third micro-circuit





STOP RECORDING