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K-Maps

● Previously in recitation, we looked at simplifying boolean expressions using 
algebraic manipulation

● Karnaugh Maps also simplify expressions in order to reduce the number of 
gates and inputs

● Maurice Karnaugh developed the Karnaugh Map at Bell Labs in 1953
● K-maps come from venn diagrams 
● Most people will use K-maps instead of boolean algebra when simplifying
● K-maps do NOT always give the smallest circuit but they often do
● The problem of getting the BEST circuit is thought to be hard



K-maps for 2 Variables

● The outputs of a truth table correspond with a 
Karnaugh map entries

A B Output

0 0 o1

0 1 o2

1 0 o3

1 1 o4

o1 o2

o3 o4



K-maps for 2 Variables

● We can simplify 
the expression by 
using the regions 
shown here
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K-maps for 2 Variables Example

● Without simplifying we can see that the output 
would be:
○

● We first translate the table to our k-map
● We now want to look at the relationships of the 1’s
● Since we see that the 1’s have a B and A in 

common
○

A B Output

0 0 0

0 1 1

1 0 1

1 1 1

0 1

1 1
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● Without simplifying we can see that the output 
would be:
○

● We first translate the table to our k-map
● We now want to look at the relationships of the 1’s A B Output

0 0 0

0 1 1

1 0 1

1 1 0

0 1

1 0



K-maps for 2 Variables Example

● Without simplifying we can see that the output 
would be:
○

● We first translate the table to our k-map
● We now want to look at the relationships of the 1’s
● Since we see that we have nothing in common the 

simplest we can make this statement is
○

A B Output

0 0 0

0 1 1

1 0 1

1 1 0

0 1

1 0
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K-maps for 3 and 4 Variables

● Similarly we can extend this concept to more variables
● When we have more variables we have to “fold” the map in order to see the 

relationships

Four Variables:



K-maps for 3 Variables Example

A B C Output

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0
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K-maps for 3 Variables Example

A B C Output

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

1 0 0 1

1 1 0 1

Output: 
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Sequential Circuits

● The digital circuits we looked at previously have been combinational
● Digital systems include a combinational circuit and storage elements
● These storage elements are described as sequential circuits



SR Latch

● To create a 1-bit memory, we need a circuit to remember a previous input value



SR Latch

● To create a 1-bit memory, we need a circuit to remember a previous input value
● We can construct this with two NOR gates



SR Latch

● To create a 1-bit memory, we need a circuit to remember a previous input value
● We can construct this with two NOR gates



SR Latch

● Two inputs
○ S: Setting the Latch
○ R: Resetting the latch



SR Latch

● Two inputs
○ S: Setting the Latch
○ R: Resetting the latch

● The outputs of the latch are not uniquely determined by the current inputs



SR Latch

● Two inputs
○ S: Setting the Latch
○ R: Resetting the latch

● The outputs of the latch are not uniquely determined by the current inputs
● When S is set to 1 momentarily, the latch ends up in state Q = 1, regardless of 

what state it was previously in



SR Latch

● Two inputs
○ S: Setting the Latch
○ R: Resetting the latch

● The outputs of the latch are not uniquely determined by the current inputs
● When S is set to 1 momentarily, the latch ends up in state Q = 1, regardless of 

what state it was previously in
● Setting R to 1 momentarily forces the latch to state Q = 0



SR Latch

● Two inputs
○ S: Setting the Latch
○ R: Resetting the latch

● The outputs of the latch are not uniquely determined by the current inputs
● When S is set to 1 momentarily, the latch ends up in state Q = 1, regardless of 

what state it was previously in
● Setting R to 1 momentarily forces the latch to state Q = 0
● The circuit ‘‘remembers’’ whether S or R was last on



SR Latch

● Two inputs
○ S: Setting the Latch
○ R: Resetting the latch

● The outputs of the latch are not uniquely determined by the current inputs
● When S is set to 1 momentarily, the latch ends up in state Q = 1, regardless of 

what state it was previously in
● Setting R to 1 momentarily forces the latch to state Q = 0
● The circuit ‘‘remembers’’ whether S or R was last on
● Using this property, we can build computer memories
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Clocked SR Latches

● With the clock 0, both AND gates output 0, independent of S and R, and the 
latch does not change state

● When the clock is 1, the effect of the AND gates vanishes and the latch relies 
on S and R



Clocked D Latch

● What happens when S and R both equal 1?



Clocked D Latch

● What happens when S and R both equal 1?
● The circuit becomes nondeterministic when both R and S finally return to 0



Clocked D Latch

● What happens when S and R both equal 1?
● The circuit becomes nondeterministic when both R and S finally return to 0
● The only consistent state for S = R = 1 is Q = Q = 0, but as soon as both inputs 

return to 0, the latch must jump to one of its two stable states



Clocked D Latch

● What happens when S and R both equal 1?
● The circuit becomes nondeterministic when both R and S finally return to 0
● The only consistent state for S = R = 1 is Q = Q = 0, but as soon as both inputs 

return to 0, the latch must jump to one of its two stable states
● The latch will  jump to one of its stable states at random



Clocked D Latch 

● We resolve this issue by preventing it from ever happening
● We create a circuit that only has one input: D
● Because the input to the lower AND gate is always the complement of the 

input to the upper one, the problem of both inputs being 1 never arises.
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Flip-Flops

● Flip-flops can be combined in groups to create registers, which hold data types 
larger than 1 bit in length

● Eight flip-flops can be put together to form an 8-bit storage register
● The register accepts an 8-bit input value when the clock transitions
● To implement a register, all the clock lines are connected to the same input 

signal
● Each register will accept the new 8-bit data value on the input bus


