Circuits

250H

Half Adders

Х	Y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Subtractors

Х	Y	D	В
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Exclusive OR

Х	Y	X⊕Y	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Exclusive OR

Wait didn't we just see that column

Half Subtractors

Х	Y	D	В
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Full Subtractors

Full Subtractors

NAND and NOR

NAND and NOR

• Any circuit can be created with only **NAND** and **NOR** gates

NAND and NOR

- Any circuit can be created with only **NAND** and **NOR** gates
- Try and create **NOT**, **AND**, and **OR** using only **NAND** gates
 - $\circ \quad \ \ {\rm This \ one \ was \ my \ fault}$
 - MAKE FRIENDS AND TALK TO EACH OTHER!!!!
 - STOP BEING ME

NOT ∧**--[))-**-∘ AND ^A_B —q

Boolean Algebra Identities

TABLE 3 Basic Identities of Boolean Algebra

1.	X + 0 = X	2.	$X \cdot 1 = X$	
3.	X + 1 = 1	4.	$X \cdot 0 = 0$	
5.	X + X = X	6.	$X \cdot X = X$	
7.	$X + \overline{X} = 1$	8.	$X \cdot \overline{X} = 0$	
9.	$\overline{\overline{X}} = X$			
10.	X + Y = Y + X	11.	XY = YX	Commutative
12.	X + (Y + Z) = (X + Y) + Z	13.	X(YZ) = (XY)Z	Associative
14.	X(Y+Z) = XY + XZ	15.	X + YZ = (X + Y)(X + Z)	Distributive
<u>16.</u>	$\overline{X+Y} = \overline{X} \cdot \overline{Y}$	17.	$\overline{X \cdot Y} = \overline{X} + \overline{Y}$	DeMorgan's

1.	X + 0 = X	2.	$X \cdot 1 = X$	
3.	X + 1 = 1	4.	$X \cdot 0 = 0$	
5.	X + X = X	6.	$X \cdot X = X$	
7.	$X + \overline{X} = 1$	8.	$X \cdot \overline{X} = 0$	
9.	$\overline{\overline{X}} = X$			
10.	X + Y = Y + X	<u>11.</u>	XY = YX	Commutative
12.	X + (Y + Z) = (X + Y) + Z	13.	X(YZ) = (XY)Z	Associative
14.	X(Y+Z) = XY + XZ	15.	X + YZ = (X + Y)(X + Z)	Distributive
16.	$\overline{X+Y} = \overline{X} \cdot \overline{Y}$	17.	$\overline{X \cdot Y} = \overline{X} + \overline{Y}$	DeMorgan's

 $\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$

$\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$ $\bar{X}\bar{Y} + \bar{X}Y + \bar{X}Y + XY = \bar{X} + Y$

 $ar{X}ar{Y} + ar{X}Y + XY = ar{X} + Y$ $ar{X}ar{Y} + ar{X}Y + ar{X}Y + XY = ar{X} + Y$ $ar{X}ig(ar{Y} + Yig) + Yig(ar{X} + Xig) = ar{X} + Y$

 $ar{X}ar{Y}+ar{X}Y+XY=ar{X}+Y$ $ar{X}ar{Y}+ar{X}Y+ar{X}Y+XY=ar{X}+Y$ $ar{X}ig(ar{Y}+Yig)+Yig(ar{X}+Xig)=ar{X}+Y$ $ar{X}(1)+Y(1)=ar{X}+Y$

 $\overline{X}\overline{Y} + \overline{X}Y + XY = \overline{X} + Y$ $\bar{X}\bar{Y} + \bar{X}Y + \bar{X}Y + XY = \bar{X} + Y$ $ar{X}ig(ar{Y}+Yig) + Yig(ar{X}+Xig) = ar{X}+Y$ $\bar{X}(1) + Y(1) = \bar{X} + Y$ $\bar{X} + Y = \bar{X} + Y$

Let's Check with Truth Tables

Х	X	Y	Ŷ	$\overline{X}\overline{Y} + \overline{X}Y + XY$	X + Y
0	1	0	1	1	1
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	0	1	1

$\bar{X}\bar{Y}\,+\,\bar{X}Y\,+\,XY\,=\,\bar{X}\,+\,Y$

• How many gates on the left?

- How many gates on the left?
 - 0 8

- How many gates on the left?
 - o **8**
- How many gates on the right?

- How many gates on the left?
 - o **8**
- How many gates on the right?
 - o 2

 $\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$

- How many gates on the left?
 8
- How many gates on the right?
 2
- 2 is much better than 8

