START

RECORDING

Logic Began with Aristotle

- Whiggish History: He invented sets, boolean logic, and quantifiers.

Logic Began with Aristotle

- Whiggish History: He invented sets, boolean logic, and quantifiers.
- True History: Approximations of the above.

What Was Aristotle's Motive?

- He sought to show some sentences true because of their FORM independent of their CONTENT.

What Was Aristotle's Motive?

- He sought to show some sentences true because of their FORM independent of their CONTENT.
- Alice got an A in 250 H OR Alice DID NOT get an A in 250 H

What Was Aristotle's Motive?

- He sought to show some sentences true because of their FORM independent of their CONTENT.
- Alice got an A in 250 H OR Alice DID NOT get an A in 250 H
- This is true whether or not Alice got an A in 250 H .
- More generally, if S is any statement then

S or NOT S
is true.

What Was Aristotle's Motive?

- He sought to show some sentences true because of their FORM independent of their CONTENT.
- Alice got an A in 250 H OR Alice DID NOT get an A in 250 H
- This is true whether or not Alice got an A in 250 H .
- More generally, if S is any statement then
S or NOT S
is true.
- Aristotle and others thought that using Logic they could settle arguments in philosophy and other fields.
- We know better.

Module 1: Propositional Logic

- The most elementary kind of logic in Computer Science
- Also known as Boolean Logic, by virtue of George Boole (1815-1864)

Propositional Symbols

- The building blocks of propositional logic.
- Think of them as bits or boxes that hold a value of 1 (True) or 0 (False)
- Denoted using a lowercase English letter ($\mathrm{p}, \mathrm{q}, \ldots, \mathrm{z}$)

What is a Proposition

- A proposition is a statement that HAS a truth value.

What is a Proposition

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
- Bill is tall.

What is a Proposition

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
- Bill is tall.
- NOT a proposition since its not well defined.

What is a Proposition

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
- Bill is tall.
- NOT a proposition since its not well defined.
- Emily is short.

What is a Proposition

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
- Bill is tall.
- NOT a proposition since its not well defined.
- Emily is short.
- NOT a proposition since its not well defined.
- (Emily is not short. Everyone taller is just freakishly tall.)

What is a Proposition

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
- Bill is tall.
- NOT a proposition since its not well defined.
- Emily is short.
- NOT a proposition since its not well defined.
- (Emily is not short. Everyone taller is just freakishly tall.)
- Bill is taller than Emily.

What is a Proposition

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
- Bill is tall.
- NOT a proposition since its not well defined.
- Emily is short.
- NOT a proposition since its not well defined.
- (Emily is not short. Everyone taller is just freakishly tall.)
- Bill is taller than Emily.
- IS proposition. Also its TRUE.

What is a Proposition

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
- Bill is tall.
- NOT a proposition since its not well defined.
- Emily is short.
- NOT a proposition since its not well defined.
- (Emily is not short. Everyone taller is just freakishly tall.)
- Bill is taller than Emily.
- IS proposition. Also its TRUE.
- Bill got B's in two courses in Logic as an undergraduate.

What is a Proposition

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
- Bill is tall.
- NOT a proposition since its not well defined.
- Emily is short.
- NOT a proposition since its not well defined.
- (Emily is not short. Everyone taller is just freakishly tall.)
- Bill is taller than Emily.
- IS proposition. Also its TRUE.
- Bill got B's in two courses in Logic as an undergraduate.
- IS a proposition whether or not it is true.

What is a Proposition

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
- Bill is tall.
- NOT a proposition since its not well defined.
- Emily is short.
- NOT a proposition since its not well defined.
- (Emily is not short. Everyone taller is just freakishly tall.)
- Bill is taller than Emily.
- IS proposition. Also its TRUE.
- Bill got B's in two courses in Logic as an undergraduate.
- IS a proposition whether or not it is true.
- $2+2=5$

What is a Proposition

- A proposition is a statement that HAS a truth value.
- Are the following propositions:
- Bill is tall.
- NOT a proposition since its not well defined.
- Emily is short.
- NOT a proposition since its not well defined.
- (Emily is not short. Everyone taller is just freakishly tall.)
- Bill is taller than Emily.
- IS proposition. Also its TRUE.
- Bill got B's in two courses in Logic as an undergraduate.
- IS a proposition whether or not it is true.
- $2+2=5$
- YES its a proposition. Its FALSE.

Operations in Boolean logic

- There are three basic operations in boolean logic
- Conjunction (AND)
- Disjunction (OR)
- Negation (NOT)
- Other operations can be defined in terms of those three.

Negation (NOT, ~, ᄀ)

p	$\sim p$
F	τ
τ	F

Conjunction (^)

p	q	$p \wedge q$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Conjunction (^)

Fun exercise

- Fill-in the following truth table:

p	q	$p \wedge(\sim q)$
\boldsymbol{F}	\boldsymbol{F}	$?$
\boldsymbol{F}	\boldsymbol{T}	$?$
\boldsymbol{T}	\boldsymbol{F}	$?$
\boldsymbol{T}	\boldsymbol{T}	$\boldsymbol{?}$

Fun exercise

- Fill-in the following truth table:

p	q	$p \wedge(\sim q)$
\boldsymbol{F}	\boldsymbol{F}	
\boldsymbol{F}	\boldsymbol{T}	
\boldsymbol{T}	\boldsymbol{F}	
\boldsymbol{T}	\boldsymbol{T}	

Fun exercise

- Fill-in the following truth table:

p	q	$p \wedge(\sim q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	
\boldsymbol{T}	\boldsymbol{F}	
\boldsymbol{T}	\boldsymbol{T}	

Fun exercise

- Fill-in the following truth table:

p	q	$p \wedge(\sim q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	
\boldsymbol{T}	\boldsymbol{T}	

Fun exercise

- Fill-in the following truth table:

p	q	$p \wedge(\sim q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	

Fun exercise

- Fill-in the following truth table:

p	q	$p \wedge(\sim q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{F}

Disjunction

p	q	$p \vee q$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Disjunction

p	q	$p \vee q$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Rule of thumb: one of p or q must be 1

Fun exercise

- Fill-in the following truth table:

p	q	$p \vee(p \wedge q)$
\boldsymbol{F}	\boldsymbol{F}	$?$
\boldsymbol{F}	\boldsymbol{T}	$?$
\boldsymbol{T}	\boldsymbol{F}	$?$
\boldsymbol{T}	\boldsymbol{T}	$?$

Fun exercise

- Fill-in the following truth table:

p	q	$p \vee(p \wedge q)$
\boldsymbol{F}	\boldsymbol{F}	
\boldsymbol{F}	\boldsymbol{T}	
\boldsymbol{T}	\boldsymbol{F}	
\boldsymbol{T}	\boldsymbol{T}	

Fun exercise

- Fill-in the following truth table:

p	q	$p \vee(p \wedge q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	
\boldsymbol{T}	\boldsymbol{F}	
\boldsymbol{T}	\boldsymbol{T}	

Fun exercise

- Fill-in the following truth table:

p	q	$p \vee(p \wedge q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	
\boldsymbol{T}	\boldsymbol{T}	

Fun exercise

- Fill-in the following truth table:

p	q	$p \vee(p \wedge q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	

Fun exercise

- Fill-in the following truth table:

p	q	$p \vee(p \wedge q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Fun exercise

- Fill-in the following truth table:

p	q	$p \vee(p \wedge q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

- Anything interesting here?

Fun exercise

- Fill-in the following truth table:

p	q	$p \vee(\boldsymbol{p} \wedge q)$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

- Anything interesting here?

Implication

- We want to formalize IF P THEN Q.

Implication

- We want to formalize IF P THEN Q.
- WARNING: This will NOT be like how we use implication IRL.
- IRL we use implication to mean that P really helps you to establish Q .
- That will not be the case here.

Examples and Intuition of Implication

- Is the following true:
- If the moon is made of green cheese then $2+2=5$

Examples and Intuition of Implication

- Is the following true:
- If the moon is made of green cheese then $2+2=5$
- YES this is true. From a FALSE statement you can derive anything.

Examples and Intuition of Implication

- Is the following true:
- If the moon is made of green cheese then $2+2=5$
- YES this is true. From a FALSE statement you can derive anything.
- If the moon is made of green cheese then $2+2=4$

Examples and Intuition of Implication

- Is the following true:
- If the moon is made of green cheese then $2+2=5$
- YES this is true. From a FALSE statement you can derive anything.
- If the moon is made of green cheese then $2+2=4$
- YES this is true. From a FALSE statement you can derive anything.

Examples and Intuition of Implication

- Is the following true:
- If the moon is made of green cheese then $2+2=5$
- YES this is true. From a FALSE statement you can derive anything.
- If the moon is made of green cheese then $2+2=4$
- YES this is true. From a FALSE statement you can derive anything.
- UPSHOT: In truth table for $p \rightarrow q$ whenever p is FALSE $p \rightarrow q$ will be TRUE

More Examples and Intuitions of Implication

- If $2+2=4$ then Bill is teaching Ramsey Theory this semester.

More Examples and Intuitions of Implication

- If $2+2=4$ then Bill is teaching Ramsey Theory this semester.
- TRUE- Bill IS teaching Ramsey Theory this semester so the truth of the first part does not matter.

More Examples and Intuitions of Implication

- If $2+2=4$ then Bill is teaching Ramsey Theory this semester.
- TRUE- Bill IS teaching Ramsey Theory this semester so the truth of the first part does not matter.
- UPSHOT: In truth table for $p \rightarrow q$ whenever q is TRUE $p \rightarrow q$ will be TRUE

More Examples and Intuitions of Implication

- If $2+2=4$ then Bill is teaching Ramsey Theory this semester.
- TRUE- Bill IS teaching Ramsey Theory this semester so the truth of the first part does not matter.
- UPSHOT: In truth table for $p \rightarrow q$ whenever q is TRUE $p \rightarrow q$ will be TRUE
- What case is left?
- If $2+2=4$ then Emily is 6 feet tall.

More Examples and Intuitions of Implication

- If $2+2=4$ then Bill is teaching Ramsey Theory this semester.
- TRUE- Bill IS teaching Ramsey Theory this semester so the truth of the first part does not matter.
- UPSHOT: In truth table for $p \rightarrow q$ whenever q is TRUE $p \rightarrow q$ will be TRUE
- What case is left?
- If $2+2=4$ then Emily is 6 feet tall.
- FALSE- a TRUE statement cannot imply a FALSE statement.

Truth Table for Implication (\Rightarrow)

- "If-then"

p	q	$p \Rightarrow q$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{T}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Bi-conditional (\Leftrightarrow)

- "If and only if"

p	q	$p \Leftrightarrow q$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{T}
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{F}
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}

Practice

- Fill in the following truth tables:

p	$p \Longrightarrow(\sim p)$
\boldsymbol{F}	$?$
\boldsymbol{T}	$?$

p	q	r	$(p \wedge q) \Rightarrow r$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}	$?$
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{T}	$?$
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{F}	$?$
\boldsymbol{F}	\boldsymbol{T}	\boldsymbol{T}	$?$
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{F}	$?$
\boldsymbol{T}	\boldsymbol{F}	\boldsymbol{T}	$?$
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{F}	$?$
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{T}	$?$

Contradictions / Tautologies

- Examine the statements:
- $p \wedge(\sim p)$
- $p \vee(\sim p)$
-What can you say about those statements?

STOP

