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Quantifiers

● Quantification expresses the extent to which a predicate is true over a range of 
elements

○ English: all, some, many, none, and few

● The area of logic that uses predicates and quantifiers is called predicate 
calculus

● The universal and existential quantifiers  are the most used quantifiers
● We can define many different quantifiers such as

○ There are exactly two
○ There are no more than three
○ There are at least 100

● We also have the Uniqueness Quantifier
○ “There exists a unique x such that P (x) is true.”

■ There is exactly one 
■ There is one and only one.
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Universal Quantification

● Def: The universal quantification of P (x) is the statement

 “P (x) for all values of x in the domain.” 

● The notation ∀xP (x) denotes the universal quantification of P (x). Here ∀ is 
called the universal quantifier.

● We read ∀xP (x) as “for all x P (x)” or “for every x P (x).” An element for which 
P(x) is false is called a counterexample of ∀xP (x).

● Other ways of saying for all or for every
○ all of
○ for each
○ given any
○ for arbitrary 
○ for each
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Existential Quantification

● Def: The existential quantification of P (x) is the proposition 

“There exists an element x in the domain such that P (x).” 

● We use the notation ∃xP (x) for the existential quantification of P (x). Here ∃ 
is called the existential quantifier. 

● Other ways of saying there exists
○ for some
○ for at least one
○ there is
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Example: Universal and Existential Quantification

● Determine the truth value of each of these statements if the domain consists of 
integers (..., -2, -1, 0, 1, 2, ...)

○ ∀n (n + 9 > n): True
○ ∀n (2n ≤ 3n): False (Counter Example: n = -1    - 2 ≤ -3)

● Determine the truth value of each of these statements if the domain consists of 
integers (..., -2, -1, 0, 1, 2, ...)

○ ∃n (2n = 3n): True (n=0)
○ ∃n (n2 + 1= −n): False



Quantifiers

Statement When True? When False?

∀xP (x) P (x) is true for every x There is an x for which P (x) is false.

∃xP (x) There is an x for which P (x) is true P (x) is false for every x



Quantifiers

Precedence

● The quantifiers ∀ and ∃ have higher precedence than all logical operators 
from propositional calculus

○ ∀xP (x) ∨ Q(x) is the disjunction of ∀xP (x) and Q(x).
■  it means (∀xP (x)) ∨ Q(x) NOT ∀x(P (x) ∨ Q(x))

Statement When True? When False?

∀xP (x) P (x) is true for every x There is an x for which P (x) is false.

∃xP (x) There is an x for which P (x) is true P (x) is false for every x



Negating Quantified Expressions

Negation Equivalent 
Statement

When Is Negation True? When False?

¬∃xP (x) ∀x¬P (x) For every x, P (x) is false There is an x for which P (x) is true

¬∀xP (x) ∃x¬P (x) There is an x for which P (x) is false P (x) is true for every x
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Nested Quantifiers

● Nested Quantifiers
○ One quantifier is within the scope of another

■ ∀x∃y(x + y = 0)
■ ∀x∃y(x + y = 0) = ∀xQ(x)

● Q(x) = ∃yP (x, y)
○ P(x,y) = x + y = 0

○ Everything within the scope of the quantifier acts like a propositional function
● Logic to English: 

○ ∀x∀y(x + y = y + x)
■ x + y = y + x for all real numbers x and y

○ ∀x∀y∀z(x + (y + z) = (x + y) + z)
■ x + (y + z) = (x + y) + z for all real numbers x, y, and z

● It might be helpful to think of this like a nested loop
○ ∀x∃yP (x, y)
○ Loop through the values for x
○ For each x we loop through the values for y
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The Order of Quantifiers

● Order Matters
○ Unless all quantifiers are universal quantifiers or all are existential quantifiers

● The statements ∃y∀xP (x, y) and ∀x∃yP (x, y) are not logically equivalent
○ The statement ∃y∀xP (x, y) is true if and only if there is a y that makes P (x, y) true for every x.
○ There must be a particular value of y for which P (x, y) is true regardless of the choice of x.
○ ∀x∃yP (x, y) is true if and only if for every value of x there is a value of y for which P (x, y) is 

true
○ No matter which x you choose, there must be a value of y (possibly depending on the x you 

choose) for which P (x, y) is true
■ ∀x∃yP (x, y): y can depend on x
■ ∃y∀xP (x, y): y is a constant independent of x



Quantifiers

Statement When True? When False?

∀x∀yP (x, y)
∀y∀xP (x, y)

P (x, y) is true for every pair x, y There is a pair x, y for which P (x, y) is 
false

∀x∃yP (x, y) For every x there is a y for which P (x, 
y) is true

There is an x such that P (x, y) is false 
for every y

∃x∀yP (x, y) There is an x for which P (x, y) is true 
for every y

For every x there is a y for which P (x, 
y) is false

∃x∃yP (x, y)
∃y∃xP (x, y)

There is a pair x, y for which
P (x, y) is true

P (x, y) is false for every pair x, y


