Quantifiers

250H

Quantifiers

- Quantification expresses the extent to which a predicate is true over a range of elements
- English: all, some, many, none, and few

Quantifiers

- Quantification expresses the extent to which a predicate is true over a range of elements
- English: all, some, many, none, and few
- The area of logic that uses predicates and quantifiers is called predicate calculus

Quantifiers

- Quantification expresses the extent to which a predicate is true over a range of elements
- English: all, some, many, none, and few
- The area of logic that uses predicates and quantifiers is called predicate calculus
- The universal and existential quantifiers are the most used quantifiers

Quantifiers

- Quantification expresses the extent to which a predicate is true over a range of elements
- English: all, some, many, none, and few
- The area of logic that uses predicates and quantifiers is called predicate calculus
- The universal and existential quantifiers are the most used quantifiers
- We can define many different quantifiers such as
- There are exactly two
- There are no more than three
- There are at least 100

Quantifiers

- Quantification expresses the extent to which a predicate is true over a range of elements
- English: all, some, many, none, and few
- The area of logic that uses predicates and quantifiers is called predicate calculus
- The universal and existential quantifiers are the most used quantifiers
- We can define many different quantifiers such as
- There are exactly two
- There are no more than three
- There are at least 100
- We also have the Uniqueness Quantifier
- "There exists a unique x such that $P(x)$ is true."
- There is exactly one
- There is one and only one.

Universal Quantification

- Def: The universal quantification of $P(x)$ is the statement
" $P(x)$ for all values of x in the domain."

Universal Quantification

- Def: The universal quantification of $P(x)$ is the statement
" $P(x)$ for all values of x in the domain."
- The notation $\forall x P(x)$ denotes the universal quantification of $P(x)$. Here \forall is called the universal quantifier.

Universal Quantification

- Def: The universal quantification of $P(x)$ is the statement
" $P(x)$ for all values of x in the domain."
- The notation $\forall x P(x)$ denotes the universal quantification of $P(x)$. Here \forall is called the universal quantifier.
- We read $\forall x P(x)$ as "for all $x P(x)$ " or "for every $x P(x)$." An element for which $P(x)$ is false is called a counterexample of $\forall x P(x)$.

Universal Quantification

- Def: The universal quantification of $P(x)$ is the statement
" $P(x)$ for all values of x in the domain."
- The notation $\forall x P(x)$ denotes the universal quantification of $P(x)$. Here \forall is called the universal quantifier.
- We read $\forall x P(x)$ as "for all $x P(x)$ " or "for every $x P(x)$." An element for which $P(x)$ is false is called a counterexample of $\forall x P(x)$.
- Other ways of saying for all or for every
- all of
- for each
- given any
- for arbitrary
- for each

Existential Quantification

- Def: The existential quantification of $P(x)$ is the proposition
"There exists an element x in the domain such that $P(x)$."

Existential Quantification

- Def: The existential quantification of $P(x)$ is the proposition
"There exists an element x in the domain such that $P(x)$."
- We use the notation $\exists x P(x)$ for the existential quantification of $P(x)$. Here \exists is called the existential quantifier.

Existential Quantification

- Def: The existential quantification of $P(x)$ is the proposition
"There exists an element x in the domain such that $P(x)$."
- We use the notation $\exists x P(x)$ for the existential quantification of $P(x)$. Here \exists is called the existential quantifier.
- Other ways of saying there exists
- for some
- for at least one
- there is

Example: Universal and Existential Quantification

- Determine the truth value of each of these statements if the domain consists of integers (..., -2, -1, 0, 1, 2, ...)

```
- \(\quad \forall n(n+9>n)\) :
```

- $\forall \mathrm{n}(2 \mathrm{n} \leq 3 \mathrm{n})$:

Example: Universal and Existential Quantification

- Determine the truth value of each of these statements if the domain consists of integers (..., $-2,-1,0,1,2, \ldots)$
- $\quad \forall n(n+9>n)$: True
- $\quad \forall \mathrm{n}(2 \mathrm{n} \leq 3 \mathrm{n})$: False (Counter Example: $\mathrm{n}=-1 \quad-2 \leq-3$)

Example: Universal and Existential Quantification

- Determine the truth value of each of these statements if the domain consists of integers (..., -2, -1, 0, 1, 2, ...)

```
- }\quad\foralln(n+9>n): Tru
- }\quad\forall\textrm{n}(2\textrm{n}\leq3n):\mathrm{ False (Counter Example: n=-1 - 2 <-3)
```

- Determine the truth value of each of these statements if the domain consists of integers (..., -2, -1, 0, 1, 2, ...)
- $\exists n(2 n=3 n)$:
- $\exists n\left(n^{2}+1=-n\right)$:

Example: Universal and Existential Quantification

- Determine the truth value of each of these statements if the domain consists of integers (..., -2, $-1,0,1,2, \ldots$)

```
- }\quad\foralln(n+9>n): Tru
- }\quad\forall\textrm{n}(2\textrm{n}\leq3n):\mathrm{ False (Counter Example: n=-1 - 2 <-3)
```

- Determine the truth value of each of these statements if the domain consists of integers (..., -2, -1, 0, 1, 2, ...)
- $\exists n(2 n=3 n)$: True ($n=0$)
- $\exists n\left(n^{2}+1=-n\right)$: False

Quantifiers

Statement	When True?	When False?
$\forall x P(x)$	$P(x)$ is true for every x	There is an x for which $P(x)$ is false.
$\exists x P(x)$	There is an x for which $P(x)$ is true	$P(x)$ is false for every x

Quantifiers

Statement	When True?	When False?
$\forall x P(x)$	$P(x)$ is true for every x	There is an x for which $P(x)$ is false.
$\exists x P(x)$	There is an x for which $P(x)$ is true	$P(x)$ is false for every x

Precedence

- The quantifiers \forall and \exists have higher precedence than all logical operators from propositional calculus
- $\quad \forall x P(x) \vee Q(x)$ is the disjunction of $\forall x P(x)$ and $Q(x)$.

■ it means $(\forall x P(x)) \vee Q(x)$ NOT $\forall x(P(x) \vee Q(x))$

Negating Quantified Expressions

Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every $x, P(x)$ is false	There is an x for which $P(x)$ is true
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false	$P(x)$ is true for every x

Nested Quantifiers

Nested Quantifiers

- Nested Quantifiers
- One quantifier is within the scope of another
- $\quad \forall x \exists y(x+y=0)$
- $\quad \forall x \exists y(x+y=0)=\forall x Q(x)$
- $\quad \mathrm{Q}(\mathrm{x})=\exists \mathrm{yP}(\mathrm{x}, \mathrm{y})$
- $P(x, y)=x+y=0$
- Everything within the scope of the quantifier acts like a propositional function

Nested Quantifiers

- Nested Quantifiers
- One quantifier is within the scope of another
- $\quad \forall x \exists y(x+y=0)$
- $\quad \forall x \exists y(x+y=0)=\forall x Q(x)$
- $\quad \mathrm{Q}(\mathrm{x})=\exists \mathrm{yP}(\mathrm{x}, \mathrm{y})$
- $P(x, y)=x+y=0$
- Everything within the scope of the quantifier acts like a propositional function
- Logic to English:
- $\quad \forall x \forall y(x+y=y+x)$

■ $\quad x+y=y+x$ for all real numbers x and y

- $\quad \forall x \forall y \forall z(x+(y+z)=(x+y)+z)$

■ $\quad x+(y+z)=(x+y)+z$ for all real numbers x, y, and z

Nested Quantifiers

- Nested Quantifiers
- One quantifier is within the scope of another
- $\quad \forall x \exists y(x+y=0)$
- $\quad \forall x \exists y(x+y=0)=\forall x Q(x)$
- $\mathrm{Q}(\mathrm{x})=\exists \mathrm{yP}(\mathrm{x}, \mathrm{y})$
- $P(x, y)=x+y=0$
- Everything within the scope of the quantifier acts like a propositional function
- Logic to English:
- $\quad \forall x \forall y(x+y=y+x)$
- $x+y=y+x$ for all real numbers x and y
- $\quad \forall x \forall y \forall z(x+(y+z)=(x+y)+z)$

■ $x+(y+z)=(x+y)+z$ for all real numbers x, y, and z

- It might be helpful to think of this like a nested loop
- $\quad \forall x \exists y P(x, y)$
- Loop through the values for x
- For each x we loop through the values for y

The Order of Quantifiers

- Order Matters
- Unless all quantifiers are universal quantifiers or all are existential quantifiers

The Order of Quantifiers

- Order Matters
- Unless all quantifiers are universal quantifiers or all are existential quantifiers
- The statements $\exists y \forall x P(x, y)$ and $\forall x \exists y P(x, y)$ are not logically equivalent
- The statement $\exists y \forall x P(x, y)$ is true if and only if there is a y that makes $P(x, y)$ true for every x.

The Order of Quantifiers

- Order Matters
- Unless all quantifiers are universal quantifiers or all are existential quantifiers
- The statements $\exists y \forall x P(x, y)$ and $\forall x \exists y P(x, y)$ are not logically equivalent
- The statement $\exists y \forall x P(x, y)$ is true if and only if there is a y that makes $P(x, y)$ true for every x.
- There must be a particular value of y for which $P(x, y)$ is true regardless of the choice of x.

The Order of Quantifiers

- Order Matters
- Unless all quantifiers are universal quantifiers or all are existential quantifiers
- The statements $\exists y \forall x P(x, y)$ and $\forall x \exists y P(x, y)$ are not logically equivalent
- The statement $\exists y \forall x P(x, y)$ is true if and only if there is a y that makes $P(x, y)$ true for every x.
- There must be a particular value of y for which $P(x, y)$ is true regardless of the choice of x.
- $\quad \forall x \exists y P(x, y)$ is true if and only if for every value of x there is a value of y for which $P(x, y)$ is true

The Order of Quantifiers

- Order Matters
- Unless all quantifiers are universal quantifiers or all are existential quantifiers
- The statements $\exists y \forall x P(x, y)$ and $\forall x \exists y P(x, y)$ are not logically equivalent
- The statement $\exists y \forall x P(x, y)$ is true if and only if there is a y that makes $P(x, y)$ true for every x.
- There must be a particular value of y for which $P(x, y)$ is true regardless of the choice of x.
- $\quad \forall x \exists y P(x, y)$ is true if and only if for every value of x there is a value of y for which $P(x, y)$ is true
- No matter which x you choose, there must be a value of y (possibly depending on the x you choose) for which $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is true

The Order of Quantifiers

- Order Matters
- Unless all quantifiers are universal quantifiers or all are existential quantifiers
- The statements $\exists y \forall x P(x, y)$ and $\forall x \exists y P(x, y)$ are not logically equivalent
- The statement $\exists y \forall x P(x, y)$ is true if and only if there is a y that makes $P(x, y)$ true for every x.
- There must be a particular value of y for which $P(x, y)$ is true regardless of the choice of x.
- $\quad \forall x \exists y P(x, y)$ is true if and only if for every value of x there is a value of y for which $P(x, y)$ is true
- No matter which x you choose, there must be a value of y (possibly depending on the x you choose) for which $P(x, y)$ is true
- $\quad \forall x \exists y P(x, y): y$ can depend on x
- $\exists y \forall x P(x, y)$: y is a constant independent of x

Quantifiers

Statement	When True?	When False?
$\forall x \forall y P(x, y)$ $\forall y \forall x P(x, y)$	$P(x, y)$ is true for every pair x, y	There is a pair x, y for which $P(x, y)$ is false
$\forall x \exists y P(x, y)$	For every x there is a y for which $P(x$, $y)$ is true	There is an x such that $P(x, y)$ is false for every y
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y	For every x there is a y for which $P(x$, $y)$ is false
$\exists x \exists y P(x, y)$ $\exists y \exists x P(x, y)$	There is a pair x, y for which $P(x, y)$ is true	$P(x, y)$ is false for every pair x, y

