
BILL AND EMILY RECORD LECTURE!!!!



Solving Recurrences



Solving Recurrences: Fib



Recall Fib Formula

Recall the Fib Sequence:
a0 = 0
a1 = 1
(∀n ≥ 2)[an = an−1 + an−2].

Recall the formula we gave for it.

Let α1 = 1+
√
5

2 and α2 = 1−
√
5

2 .

Then

an =
αn
1 − αn

2√
5

.

We could prove the formula by a painful algebraic induction.

Better idea Lets Derive it.
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Ignore The Base Case for a While

Plan For now find all solutions to

an = an−1 + an−2

We will combine them and modify them to fit base case.
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Solutions are Additive

Assume f (n) and g(n) both satisfy

an = an−1 + an−2.

Then for any constants c , d , cf (n) + dg(n) satisfies

an = an−1 + an−2.

This is just algebra which we will skip.

Upshot The set of solutions to an = an−1 + an−2 is closed under
addition and scalar multiplication (its a vector space).
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Guess a Solution to Just the Recurrence Part

We will guess that αn satisfies the recurrence, so

αn = αn−1 + αn−2

Factor out αn−2 to get

α2 = α + 1

α2 − α− 1 = 0

Roots are α1 = 1+
√
5

2 and α2 = 1−
√
5

2 .

αn
1 and αn

2 both satisfy the recurrence.

Upshot For any constants c, d cαn
1 + dαn

2 satisfy the recurrence.
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Its all about the Base, bout the Base. . .
https://www.youtube.com/watch?v=XWe4GpTaO8I

For any constants c , d cαn
1 + dαn

2 satisfy the recurrence.

We want to pick c , d so that the base case is satisfied.

a0 = 0: cα0
1 + dα0

2 = 0

c + d = 0.

a1 = 1. cα1
1 + dα1

2 = 0

cα1 + dα2 = 1

2 lin equations in 2 vars: c = 1√
5

, d = − 1√
5

,

Upshot The recurrence is solved by

an =
αn
1 − αn

2√
5

.
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Solving Recurrences:
Distinct Roots Case



General Problem

Given a0, a1, . . . , ak−1 and

(∀n ≥ k)[an = bk−1an−1 + · · ·+ b0an−k ]

Find a closed formula for an.
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Why Do We Care?

Why do we care about solving recurrences of the form
Given a0, a1, . . . , ak−1 and

(∀n ≥ k)[an = bk−1an−1 + · · ·+ b0an−k ]
(1) They come up in problems in combinatorics.
(2) They model some real world phenomena like Population
Growth or the spread of an infection.
(3) To solve Differential Equations sometimes they are made
discrete and become difference equations.
(4) Note: In CMSC 351 you will look at equations like

an = 2an/2 + n

Which are used to analyze algorithms. That is NOT todays topic.
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Step One: Ignore the Base

Guess that αn satisfies

an = bk−1an−1 + · · ·+ b0an−k

αn = bk−1α
n−1 + · · ·+ b0α

n−k

αk − bk−1α
k−1 − · · · − b1α− b0 = 0.

Let α1, . . . , αk be the roots.

We assume they are distinct. (Non-distinct case later.)

Upshot For any constants c1, . . . , ck

c1α
n
1 + · · ·+ ckα

n
k

is a solution to the recurrence.
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Its all about the Base, bout the Base. . .

For 0 ≤ L ≤ k − 1:
Use aL:

c1α
L
1 + · · ·+ ckα

L
k = aL

This gives k linear equations in k variables.

That can be solved.

Then you have the closed form solution.
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Solving Recurrences: The
Non-Distinct Roots Case



An Example

Recall the Bill Sequence:
a0 = 0
a1 = 1
a2 = 2
(∀n ≥ 2)[an = 7an−1 − 16an−2 + 12an−3].



Ignore The Base Case for a While

Plan For now find all solutions to
(∀n ≥ 2)[an = 7an−1 − 16an−2 + 12an−3].

We will combine them and modify them to fit base case.
Recall The set of solutions to is closed under addition and scalar
multiplication (its a vector space).



Ignore The Base Case for a While

Plan For now find all solutions to
(∀n ≥ 2)[an = 7an−1 − 16an−2 + 12an−3].

We will combine them and modify them to fit base case.

Recall The set of solutions to is closed under addition and scalar
multiplication (its a vector space).



Ignore The Base Case for a While

Plan For now find all solutions to
(∀n ≥ 2)[an = 7an−1 − 16an−2 + 12an−3].

We will combine them and modify them to fit base case.
Recall The set of solutions to is closed under addition and scalar
multiplication (its a vector space).



Guess a Solution to Just the Recurrence Part

We will guess that αn satisfies the recurrence, so

αn = 7αn−1 − 16αn−2 + 12αn−3

Factor out αn−3 to get

α3 = 7α2 − 16α + 12

α3 − 7α2 + 16α− 12 = 0

(α− 2)2(α− 3)

Roots are α1 = 2, α2 = 2, α3 = 3.

αn
1 and αn

2 and αn
3 all satisfy the recurrence.

But we need three solutions to make all of this work.
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This is So Crazy it Might Just Work
Lets see if n2n is a solution to just the recurrence.

an = 7an−1 − 16an−2 + 12an−3

We hope:

n2n = 7× (n − 1)2n−1 − 16(n − 2)2n−2 + 12(n − 3)2n−3

n23 = 7× (n − 1)22 − 16(n − 2)2 + 12(n − 3)

8n = 28(n − 1)− 32(n − 2) + 12(n − 3)

8n = 28n − 28− 32n + 64 + 12n − 36

8n = (28− 32 + 12)n + (64− 28− 36) = 8n

OH, that worked!
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General Problem

Given a0, a1, . . . , ak−1 and

(∀n ≥ k)[an = bn−1an−1 + · · ·+ bn−kan−k ]

Find a closed formula for an.
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Step One: Ignore the Base

Guess that αn satisfies

an = bn−1an−1 + · · ·+ bn−kan−k

αn = bn−1α
n−1 + · · ·+ bn−kα

n−k

αk − bn−1α
k−1 − · · · − bn−k+1α− bn−k = 0.

Let α1, . . . , αk be the roots.

Might not be distinct.

If αi appears L times then
αn
i , nαn

i , n2αn
i , . . ., nL−1αn

i are solutions.
Why We will not to into this but it involves that any multiple root
of p(x) is also a root of p′(x).



Step One: Ignore the Base

Guess that αn satisfies

an = bn−1an−1 + · · ·+ bn−kan−k

αn = bn−1α
n−1 + · · ·+ bn−kα

n−k

αk − bn−1α
k−1 − · · · − bn−k+1α− bn−k = 0.

Let α1, . . . , αk be the roots.

Might not be distinct.

If αi appears L times then
αn
i , nαn

i , n2αn
i , . . ., nL−1αn

i are solutions.
Why We will not to into this but it involves that any multiple root
of p(x) is also a root of p′(x).



Step One: Ignore the Base

Guess that αn satisfies

an = bn−1an−1 + · · ·+ bn−kan−k

αn = bn−1α
n−1 + · · ·+ bn−kα

n−k

αk − bn−1α
k−1 − · · · − bn−k+1α− bn−k = 0.

Let α1, . . . , αk be the roots.

Might not be distinct.

If αi appears L times then
αn
i , nαn

i , n2αn
i , . . ., nL−1αn

i are solutions.
Why We will not to into this but it involves that any multiple root
of p(x) is also a root of p′(x).



Step One: Ignore the Base

Guess that αn satisfies

an = bn−1an−1 + · · ·+ bn−kan−k

αn = bn−1α
n−1 + · · ·+ bn−kα

n−k

αk − bn−1α
k−1 − · · · − bn−k+1α− bn−k = 0.

Let α1, . . . , αk be the roots.

Might not be distinct.

If αi appears L times then
αn
i , nαn

i , n2αn
i , . . ., nL−1αn

i are solutions.
Why We will not to into this but it involves that any multiple root
of p(x) is also a root of p′(x).



Step One: Ignore the Base

Guess that αn satisfies

an = bn−1an−1 + · · ·+ bn−kan−k

αn = bn−1α
n−1 + · · ·+ bn−kα

n−k

αk − bn−1α
k−1 − · · · − bn−k+1α− bn−k = 0.

Let α1, . . . , αk be the roots.

Might not be distinct.

If αi appears L times then
αn
i , nαn

i , n2αn
i , . . ., nL−1αn

i are solutions.

Why We will not to into this but it involves that any multiple root
of p(x) is also a root of p′(x).



Step One: Ignore the Base

Guess that αn satisfies

an = bn−1an−1 + · · ·+ bn−kan−k

αn = bn−1α
n−1 + · · ·+ bn−kα

n−k

αk − bn−1α
k−1 − · · · − bn−k+1α− bn−k = 0.

Let α1, . . . , αk be the roots.

Might not be distinct.

If αi appears L times then
αn
i , nαn

i , n2αn
i , . . ., nL−1αn

i are solutions.
Why We will not to into this but it involves that any multiple root
of p(x) is also a root of p′(x).



Its all about the Base, bout the Base. . .

We now have n different solutions which we will call:
nj1αn

1, nj2αn
2, . . ., njkαn

k ,
(most of the j ’s are 0).
For 0 ≤ L ≤ k − 1:
Use aL:

c1L
j1αL

1 + · · ·+ ckL
jkαL

k = aL

This gives k linear equations in k variables.

That can be solved.

Then you have the closed form solution.
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More Complicated
Recurrences



An Example

Recall the Emily Sequence:
a0 = 0
a1 = 1
(∀n ≥ 2)[an = 5an−1 − 6an−2 + n2].

How to solve this?
Lemma Assume
f (n) is a solution to an = 5an−1 − 6an−2 + n2, and
g(n) is a solution to an = 5an−1 − 6an−2.
Then f (n) + g(n) is a solution to
an = 5an−1 − 6an−2 + n2.

The proof is algebra which we will skip.
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Ignore The Base Case for a While

Plan For now find all solutions to

an = 5an−1 − 6an−2 called The Homogenous Solution

and some solution to

an = 5an−1 − 6an−2 + n2 called The Particular Solution

We will then add them.
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Finding the Homogenous Solution

We want all solutions to an = 5an−1 − 6an−2.

This we know how to do so I will just give you the answer:

c2n + d3n where c , d ∈ R .

We will save finding c , d for the base case.
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Finding a Particular Solution

We want a solutions to an = 5an−1 − 6an−2 + n2.

Guess it is of the form An2 + Bn + C .

An2+Bn+C = 5(A(n−1)2+B(n−1)+C )−6(A(n−2)2+B(n−2)+C )+n2

An2 + Bn + C = (1−A)n2 + (14A + 2B)n + (5A− 3B + 2C − 24)

GOTO next slide
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Finding a Particular Solution (cont)

For ALL n we have:

An2 + Bn + C = (1−A)n2 + (14A + 2B)n + (5A− 3B + 2C − 24)

We match coefficients.

A = 1− A, so A = 1
2 .

B = 14A + 2B, so B = −14A = −7.

C = 5A− 3B + 2C − 24 = 5
2 + 21 + 2C − 24 = 2C − 3

So C = 3.

Particular solution is

−1

2
n2 − 7n + 3
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Its all about the Base, bout the Base. . .

For any constants c , d

c × 2n + d × 3n − 1

2
n2 − 7n + 3

satisfy the recurrence.
We use the base case to find c , d that work.

We leave this to the reader.
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How to Guess the Particular Solution

If the extra term is a poly of degree d , guess a poly of degree d

If the extra term is 5n then guess A× 5n.

If the extra term is BLAH then guess something of BLAH form
with undetermined coefficients.
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General Algorithm

We are not going to present the general algorithm for a general
recurrence with an extra term since we are confident you an do
that yourself.



Deja Vu Now or Later

If you have had a course in Differential Equations then you may be
feeling a sense of Deja Vu.

The technique described is very similar to techniques to solve
differential equations of the form

y ′′ + ay ′ + by + f (x) = 0

If you have a course in Diff Equations later then when you take it
you will have a sense of Deja Vu, because of this course.
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BILL AND EMILY STOP RECORDING
LECTURE!!!!


