Generators and Diffie-Hellman

250H

Generators

- Let p be a prime and $\mathrm{g} \in\{1, \ldots, \mathrm{p}-1\} . g$ is a generator for mod p if

$$
\left\{g^{1}, \ldots, g^{p-1}\right\}=\{1, \ldots, p-1\} .
$$

Generators

- Let p be a prime and $g \in\{1, \ldots, p-1\}$. g is a generator for mod p if

$$
\left\{g^{1}, \ldots, g^{p-1}\right\}=\{1, \ldots, p-1\} .
$$

- This set $\{1, \ldots, p-1\}$ on multiplication is known as $\mathbb{Z}_{\mathrm{p}}{ }^{*}$

Generators

- Let p be a prime and $g \in\{1, \ldots, p-1\} . g$ is a generator for mod p if

$$
\left\{g^{1}, \ldots, g^{p-1}\right\}=\{1, \ldots, p-1\} .
$$

- This set $\{1, \ldots, \mathrm{p}-1\}$ on multiplication is known as $\mathbf{Z}_{\mathrm{p}}{ }^{*}$
- Note that $g^{k^{*} \mid}=g^{\mid * k}$ for $k, I \in \mathbf{Z}$

Example of generators for $\mathbf{Z}_{\mathrm{p}}{ }^{*}$

- Consider $\mathbf{Z}_{2}{ }^{*}$
- $\mathbf{Z}_{2}{ }^{*}=\{1\}$
- What is the generator for $\mathbf{Z}_{2}{ }^{*}$?

Example of generators for $\mathbf{Z}_{\mathrm{p}}{ }^{*}$

- Consider $\mathbf{Z}_{2}{ }^{*}$
- $\mathbf{Z}_{2}{ }^{*}=\{1\}$
- What is the generator for \mathbf{Z}_{2}^{*} ?
- 1

Example of generators for $\mathbf{Z}_{\mathrm{p}}{ }^{*}$

- Consider $\mathbf{Z}_{2}{ }^{*}$
- $\mathbf{Z}_{2}{ }^{*}=\{1\}$
- What is the generator for \mathbf{Z}_{2}^{*} ?
- 1
- Consider $\mathbf{Z}_{3}{ }^{*}$
- $\mathbf{Z}_{3}{ }^{*}=\{1,2\}$
- What is the generator for $\mathbf{Z}_{3}{ }^{*}$?

Example of generators for $\mathbf{Z}_{\mathrm{p}}{ }^{*}$

- Consider $\mathbf{Z}_{2}{ }^{*}$
- $\mathbf{Z}_{2}{ }^{*}=\{1\}$
- What is the generator for \mathbf{Z}_{2}^{*} ?
- 1
- Consider $\mathbf{Z}_{3}{ }^{*}$
- $\mathbf{Z}_{3}{ }^{*}=\{1,2\}$
- What is the generator for $\mathbf{Z}_{3}{ }^{*}$?
- 1^{n} will just give us back 1 so 1 can't be a generator
- $2^{1}=2$
$2^{2}=1$
So 2 is a generator for $\mathbf{Z}_{3}{ }^{*}$

Consider $\mathbf{Z}_{11}{ }^{*}=\{1,2,3,4,5,6,7,8,9,10\}$

- Generators for $\mathbf{Z}_{11}{ }^{*}$

$$
\begin{array}{ll}
\circ & \text { 2: }[2,4,8,5,10,9,7,3,6,1] \\
\circ & \text { 6: }[6,3,7,9,10,5,8,4,2,1] \\
\circ & 7:[7,5,2,3,10,4,6,9,8,1] \\
\circ & \text { 8: }[8,9,6,4,10,3,2,5,7,1]
\end{array}
$$

Consider $\mathbf{Z}_{11}{ }^{*}=\{1,2,3,4,5,6,7,8,9,10\}$

- Generators for $\mathbf{Z}_{11}{ }^{*}$

$$
\begin{array}{ll}
\circ & 2:[2,4,8,5,10,9,7,3,6,1] \\
\circ & \text { 6: }[6,3,7,9,10,5,8,4,2,1] \\
\circ & 7:[7,5,2,3,10,4,6,9,8,1] \\
\circ & \text { 8: }[8,9,6,4,10,3,2,5,7,1]
\end{array}
$$

- Numbers that are not generators for $\mathbf{Z}_{11}{ }^{*}$
- 1: $[1,1,1,1,1,1,1,1,1,1]$
- 3: $[3,9,5,4,1,3,9,5,4,1]$
- 4: $[4,5,9,3,1,4,5,9,3,1]$
- 5: $[5,3,4,9,1,5,3,4,9,1]$
- 9: $[9,4,3,5,1,9,4,3,5,1]$
- 10: $[10,1,10,1,10,1,10,1,10,1]$

The Discrete Logarithm Problem

- For any integer b and primitive root a of prime number p, we can find a unique exponent i such that

$$
z \equiv g^{i}(\bmod p) \text { where } 0 \leq i \leq(p-1)
$$

The Discrete Logarithm Problem

- For any integer b and primitive root a of prime number p, we can find a unique exponent i such that

$$
z \equiv g^{i}(\bmod p) \text { where } 0 \leq i \leq(p-1)
$$

- Do you think it is difficult for a computer to find i?

The Discrete Logarithm Problem

- For any integer b and primitive root a of prime number p, we can find a unique exponent i such that

$$
z \equiv g^{i}(\bmod p) \text { where } 0 \leq i \leq(p-1)
$$

- There is no efficient classical algorithm known for computing discrete logarithms in general

What is Easy and What is Hard for a Computer

- Easy
- Powers: $a^{b} \bmod p$
- Finding a prime p and a generator g for $\mathrm{Z} _\mathrm{p}^{*}$ (we have not done this, but it's true)

What is Easy and What is Hard for a Computer

- Easy
- Powers: $a^{\text {b }} \bmod p$
- Finding a prime p and a generator g for $\mathrm{Z} _\mathrm{p}^{*}$ (we have not done this, but it's true)
- HARD:
- Discrete Log (Actually a close cousin of DL, but we won't get into that.)

Diffie-Hellman Key Exchange

- The purpose of the algorithm is to enable two users to securely exchange a key that can then be used for encryption of messages

Diffie-Hellman Key Exchange

- The purpose of the algorithm is to enable two users to securely exchange a key that can then be used for encryption of messages
- It allows a way in which a public channel can be used to create a confidential shared key

Diffie-Hellman Key Exchange

- The purpose of the algorithm is to enable two users to securely exchange a key that can then be used for encryption of messages
- It allows a way in which a public channel can be used to create a confidential shared key
- The algorithm is depends on the difficulty of a problem similar to computing discrete logarithms
- Given g^{a} and g^{b}, find $g^{a b}$

Diffie-Hellman

1. Alice and Bob publicly agree on a large prime p to be what we are modding by Alice and Bob publicly agree on a generator for $\bmod p: g$

Diffie-Hellman

1. Alice and Bob publicly agree on a large prime p to be what we are modding by Alice and Bob publicly agree on a generator for $\bmod p: g$
2. Alice selects a secret key: a

Bob selects a secret key: b

Diffie-Hellman

1. Alice and Bob publicly agree on a large prime p to be what we are modding by Alice and Bob publicly agree on a generator for $\bmod p: g$
2. Alice selects a secret key: a

Bob selects a secret key: b
3. Alice combines her secret key a with the generator and prime that were decided on: $A=g^{a} \bmod p$
Bob combines his secret key b with the generator and prime that were decided on: $B=g^{b} \bmod p$

Diffie-Hellman

1. Alice and Bob publicly agree on a large prime p to be what we are modding by Alice and Bob publicly agree on a generator for $\bmod p: g$
2. Alice selects a secret key: a

Bob selects a secret key: b
3. Alice combines her secret key a with the generator and prime that were decided on: $A=g^{a} \bmod p$
Bob combines his secret key b with the generator and prime that were decided on: $B=g^{b} \bmod p$
4. Alice and Bob share their values with each other

Diffie-Hellman

1. Alice and Bob publicly agree on a large prime p to be what we are modding by Alice and Bob publicly agree on a generator for $\bmod p: g$
2. Alice selects a secret key: a

Bob selects a secret key: b
3. Alice combines her secret key a with the generator and prime that were decided on: $A=g^{a} \bmod p$
Bob combines his secret key b with the generator and prime that were decided on: $B=g^{b} \bmod p$
4. Alice and Bob share their values with each other
5. Alice computes: $z=(B \text { mod } p)^{a} \bmod p$

Bob computes: $z=(A \bmod p)^{a} \bmod p$

Diffie-Hellman

1. Alice and Bob publicly agree on a large prime p to be what we are modding by Alice and Bob publicly agree on a generator for $\bmod p: g$
2. Alice selects a secret key: a

Bob selects a secret key: b
3. Alice combines her secret key a with the generator and prime that were decided on: $A=g^{a} \bmod p$
Bob combines his secret key b with the generator and prime that were decided on: $B=g^{b} \bmod p$
4. Alice and Bob share their values with each other
5. Alice computes: $z=(B \bmod p)^{a} \bmod p$

Bob computes: $z=(A \bmod p)^{a} \bmod p$
6. z is the shared secret key that can be used to encrypt and decrypt messages to each other

Diffie-Hellman Example

1. Alice and Bob publicly agree $p=353$

Alice and Bob publicly agree $\mathrm{g}=3$

Diffie-Hellman Example

1. Alice and Bob publicly agree $p=353$

Alice and Bob publicly agree $\mathrm{g}=3$
2. Alice selects a secret key: 97

Bob selects a secret key: 233

Diffie-Hellman Example

1. Alice and Bob publicly agree $p=353$

Alice and Bob publicly agree $\mathrm{g}=3$
2. Alice selects a secret key: 97

Bob selects a secret key: 233
3. Alice finds $A: 3^{97} \bmod 353=40$

Bob finds B: $3^{233} \bmod 353=248$

Diffie-Hellman Example

1. Alice and Bob publicly agree $p=353$

Alice and Bob publicly agree $\mathrm{g}=3$
2. Alice selects a secret key: 97

Bob selects a secret key: 233
3. Alice finds $A: 3^{97} \bmod 353=40$

Bob finds B: $3^{233} \bmod 353=248$
4. Alice and Bob share their values with each other

Diffie-Hellman Example

1. Alice and Bob publicly agree $p=353$

Alice and Bob publicly agree $\mathrm{g}=3$
2. Alice selects a secret key: 97

Bob selects a secret key: 233
3. Alice finds $A: 3^{97} \bmod 353=40$

Bob finds B: $3^{233} \bmod 353=248$
4. Alice and Bob share their values with each other
5. Alice computes: $z=(248 \bmod 353)^{97} \bmod 353=160$

Bob computes: $z=(40 \bmod 353)^{233} \bmod 353=160$

Diffie-Hellman Example

1. Alice and Bob publicly agree $p=353$

Alice and Bob publicly agree $\mathrm{g}=3$
2. Alice selects a secret key: 97

Bob selects a secret key: 233
3. Alice finds $A: 3^{97} \bmod 353=40$

Bob finds B: $3^{233} \bmod 353=248$
4. Alice and Bob share their values with each other
5. Alice computes: $z=(248 \bmod 353)^{97} \bmod 353=160$

Bob computes: $z=(40 \bmod 353)^{233} \bmod 353=160$
6. 160 is the shared secret key

Diffie-Hellman

- In the example on the previous slide, it would be possible to use brute force to find 160

Diffie-Hellman

- In the example on the previous slide, it would be possible to use brute force to find 160
- In particular, Eve could determine the common key by finding the solution to $3^{\mathrm{a}} \bmod 353=40$ or $3^{\mathrm{b}} \bmod 353=248$

Diffie-Hellman

- In the example on the previous slide, it would be possible to use brute force to find 160
- In particular, Eve could determine the common key by finding the solution to $3^{\mathrm{a}} \bmod 353=40$ or $3^{\mathrm{b}} \bmod 353=248$
- Eve could just calculate the powers of $3 \bmod 353$ and stop when she gets to 40 or 248

Diffie-Hellman

- In the example on the previous slide, it would be possible to use brute force to find 160
- In particular, Eve could determine the common key by finding the solution to $3^{\mathrm{a}} \bmod 353=40$ or $3^{\mathrm{b}} \bmod 353=248$
- Eve could just calculate the powers of 3 mod 353 and stop when she gets to 40 or 248
- With large numbers brute force becomes impractical

Diffie-Hellman

- From -500BC to 1976AD if two people wanted to set up a crypto system they had to meet to exchange keys.

Diffie-Hellman

- From -500BC to 1976AD if two people wanted to set up a crypto system they had to meet to exchange keys.
- Diffie-Hellman showed a way for two people to establish a shared secret key without meeting- note that all of their communication is public.

Diffie-Hellman

- From -500BC to 1976AD if two people wanted to set up a crypto system they had to meet to exchange keys.
- Diffie-Hellman showed a way for two people to establish a shared secret key without meeting- note that all of their communication is public.
- Hence DH solved a problem that was open for over 2000 years!

