Another Proof by Contradiction: The Set of Primes is Infinite

Infinity of primes

- Assume that the primes are finite. Then, we can list them in ascending order:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Infinity of primes

- Assume that the primes are finite. Then, we can list them in ascending order:

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

Let's consider the number

$$
N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1
$$

Infinity of primes

$$
N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1
$$

Clearly, N is bigger than any p_{i}. We have two cases:
i. $\quad N$ is prime. Contradiction, since N is bigger than any prime.
ii. $\quad N$ is composite. This means that N has at least one factor f. Let's take the smallest factor of N, and call it $f_{\min }$. Then, this number is prime (why?) Since $f_{\text {min }}$ is prime, it divides $p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}$. By the previous theorem, this means that it cannot possibly divide $p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}+1=N$. Contradiction, since we assumed that $f_{\min }$ is a factor of N .

Therefore, the primes are not finite.

