START

RECORDING

Mod Arithmetic

CMSC250

Divides

- We say that $a \mid b$ if $b=a x$ where $x \in Z$

Divides

- We say that $a \mid b$ if $b=a x$ where $x \in Z$
- Examples:
- 2|10
- 5|25
- $5 \nmid 7$
- $0 \nmid 3$
- $8 \mid 8$

Modular Arithmetic

- We say that $a \equiv b(\bmod m)$ (read "a is congruent to $b \bmod m$ ") means that $m \mid(a-b)$.

Modular Arithmetic

- We say that $a \equiv b(\bmod m)$ (read "a is congruent to $b \bmod m$ ") means that $m \mid(a-b)$.
- Examples:
- $6 \equiv 2(\bmod 4)$
- $81 \equiv 0(\bmod 9)$
- $91 \equiv 0(\bmod 13)$
- $100 \equiv 2(\bmod 7)$

Modular Arithmetic

- We say that $a \equiv b(\bmod m)$ (read "a is congruent to $b \bmod m$ ") means that $m \mid(a-b)$.
- Examples:
- $6 \equiv 2(\bmod 4)$
- $81 \equiv 0(\bmod 9)$
- $91 \equiv 0(\bmod 13)$
- $100 \equiv 2(\bmod 7)$
-Convention: $0 \leq b \leq m-1$

Modular Arithmetic

- We say that $a \equiv b(\bmod m)$ (read "a is congruent to $b \bmod m$ ") means that $m \mid(a-b)$.
- Examples:
- $6 \equiv 2(\bmod 4)$
- $81 \equiv 0(\bmod 9)$
- $91 \equiv 0(\bmod 13)$
- $100 \equiv 2(\bmod 7)$
- Convention: $0 \leq b \leq m-1$
- THINK: Take large number a, divide by m, remainder is b

Modular Arithmetic

- We say that $a \equiv b(\bmod m)$ (read "a is congruent to $b \bmod m$ ") means that $m \mid(a-b)$.
- Examples:
- $6 \equiv 2(\bmod 4)$
- $81 \equiv 0(\bmod 9)$
- $91 \equiv 0(\bmod 13)$
- $100 \equiv 2(\bmod 7)$
- Convention: $0 \leq b \leq m-1$
- THINK: Take large number a, divide by m, remainder is b
- Terminology: "Reducing a mod m"

三 Vs \equiv

- In Logic, $\varphi_{1} \equiv \varphi_{2}$ mean that φ_{1} and φ_{2} have the same truth table (are logically equivalent)

三 Vs \equiv

- In Logic, $\varphi_{1} \equiv \varphi_{2}$ mean that φ_{1} and φ_{2} have the same truth table (are logically equivalent)
- In Number Theory, $a \equiv b(\bmod m)$, read "a is congruent to b mod $\left.m^{\prime \prime}\right)$ means $m \mid(a-b)$.

三 Vs \equiv

- In Logic, $\varphi_{1} \equiv \varphi_{2}$ mean that φ_{1} and φ_{2} have the same truth table (are logically equivalent)
- In Number Theory, $a \equiv b(\bmod m)$, read "a is congruent to
b mod $\left.m^{\prime \prime}\right)$ means $m \mid(a-b)$.
- THESE TWO ARE VERY DIFFERENT!!!! THEY HAVE NOTHING TO DO WITH EACH OTHER!

Properties of congruence

1. If $a_{1} \equiv b_{1}(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$, then:

$$
\left(a_{1}+a_{2}\right) \equiv\left(b_{1}+b_{2}\right)(\bmod m)
$$

Properties of congruence

1. If $a_{1} \equiv b_{1}(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$, then:

$$
\left(a_{1}+a_{2}\right) \equiv\left(b_{1}+b_{2}\right)(\bmod m)
$$

Proof:

- $a_{1} \equiv b_{1}(\bmod m) \Rightarrow m \mid\left(a_{1}-b_{1}\right)$

Properties of congruence

1. If $a_{1} \equiv b_{1}(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$, then:

$$
\left(a_{1}+a_{2}\right) \equiv\left(b_{1}+b_{2}\right)(\bmod m)
$$

Proof:

- $a_{1} \equiv b_{1}(\bmod m) \Rightarrow m \mid\left(a_{1}-b_{1}\right)$
- $\left(\exists r_{1} \in \mathbb{Z}\right)\left[a_{1}-b_{1}=m \cdot r_{1}\right]$ (I)

Properties of congruence

1. If $a_{1} \equiv b_{1}(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$, then:

$$
\left(a_{1}+a_{2}\right) \equiv\left(b_{1}+b_{2}\right)(\bmod m)
$$

Proof:

- $a_{1} \equiv b_{1}(\bmod m) \Rightarrow m \mid\left(a_{1}-b_{1}\right)$
- $\left(\exists r_{1} \in \mathbb{Z}\right)\left[a_{1}-b_{1}=m \cdot r_{1}\right]$ (I)
- Similarly, $\left(\exists r_{2} \in \mathbb{Z}\right)\left[a_{2}-b_{2}=m \cdot r_{2}\right]$ (II)

Properties of congruence

1. If $a_{1} \equiv b_{1}(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$, then:

$$
\left(a_{1}+a_{2}\right) \equiv\left(b_{1}+b_{2}\right)(\bmod m)
$$

Proof:

- $a_{1} \equiv b_{1}(\bmod m) \Rightarrow m \mid\left(a_{1}-b_{1}\right)$
- $\left(\exists r_{1} \in \mathbb{Z}\right)\left[a_{1}-b_{1}=m \cdot r_{1}\right]$ (I)
- Similarly, $\left(\exists r_{2} \in \mathbb{Z}\right)\left[a_{2}-b_{2}=m \cdot r_{2}\right]$ (II)
- Therefore, by (I) and (II) we have:

$$
\begin{gathered}
a_{1}-b_{1}+a_{2}-b_{2}=m \cdot r_{1}+m \cdot r_{2} \Rightarrow\left(a_{1}+a_{2}\right)-\left(b_{1}+b_{2}\right)=m \cdot\left(r_{1}+r_{2}\right) \Rightarrow \\
a_{1}+a_{2} \equiv\left(b_{1}+b_{2}\right)(\bmod m)
\end{gathered}
$$

Properties of congruence

2. If $a_{1} \equiv b_{1}(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$, then

$$
a_{1} \cdot a_{2} \equiv b_{1} \cdot b_{2}(\bmod m)
$$

Properties of congruence

Proof: Let $a_{1} \equiv b_{1}(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$. By definition, $j m=a_{1}-b_{1}$ and $k m=a_{2}-b_{2}$ with $j, k \in \mathbb{Z}$. So, $j m+b_{1}=a_{1}$ and $k m+b_{2}=a_{2}$.

Properties of congruence

Proof: Let $a_{1} \equiv b_{1}(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$. By definition, $j m=a_{1}-b_{1}$ and $k m=a_{2}-b_{2}$ with $j, k \in \mathbb{Z}$. So, $j m+b_{1}=a_{1}$ and $k m+b_{2}=a_{2}$. Then,

$$
a_{1} \cdot a_{2}=\left(j m+b_{1}\right)\left(k m+b_{2}\right)
$$

Properties of congruence

Proof: Let $a_{1} \equiv b_{1}(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$. By definition, $j m=a_{1}-b_{1}$ and $k m=a_{2}-b_{2}$ with $j, k \in \mathbb{Z}$. So, $j m+b_{1}=a_{1}$ and $k m+b_{2}=a_{2}$. Then,

$$
\begin{aligned}
& a_{1} \cdot a_{2}=\left(j m+b_{1}\right)\left(k m+b_{2}\right) \\
= & j k m^{2}+k m b_{1}+j m b_{2}+b_{1} \cdot b_{2} \\
= & m\left(j k m+k b_{1}+j b_{2}\right)+b_{1} \cdot b_{2}
\end{aligned}
$$

Properties of congruence

Proof: Let $a_{1} \equiv b_{1}(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$. By definition, $j m=a_{1}-b_{1}$ and $k m=a_{2}-b_{2}$ with $j, k \in \mathbb{Z}$. So, $j m+b_{1}=a_{1}$ and $k m+b_{2}=a_{2}$. Then,

$$
\begin{aligned}
& a_{1} \cdot a_{2}=\left(j m+b_{1}\right)\left(k m+b_{2}\right) \\
= & j k m^{2}+k m b_{1}+j m b_{2}+b_{1} \cdot b_{2} \\
= & m\left(j k m+k b_{1}+j b_{2}\right)+b_{1} \cdot b_{2}
\end{aligned}
$$

So, $\left(a_{1} \cdot a_{2}\right)-\left(b_{1} \cdot b_{2}\right)=m\left(j k m+k b_{1}+j b_{2}\right)$. Since $j k m+k b_{1}+j b_{2} \in \mathbb{Z}, a_{1} \cdot a_{2} \equiv b_{1} \cdot b_{2}(\bmod m)$

Proof with modular arithmetic

- Claim: Any two integers of opposite parity sum to an odd number.

Proof with modular arithmetic

- Claim: Any two integers of opposite parity sum to an odd number.
- Proof:
- Since a_{1}, a_{2} are opposite parity. Assume that

$$
a_{1} \equiv 0(\bmod 2) \text { and } a_{2} \equiv 1(\bmod 2)
$$

Proof with modular arithmetic

- Claim: Any two integers of opposite parity sum to an odd number.
- Proof:
- Since a_{1}, a_{2} are opposite parity. Assume that

$$
a_{1} \equiv 0(\bmod 2) \text { and } a_{2} \equiv 1(\bmod 2)
$$

- Using the properties of modular arithmetic, we obtain:

$$
a_{1}+a_{2} \equiv(0+1)(\bmod 2) \equiv 1(\bmod 2)
$$

- Done.

More proofs

- Similarly, you can show that $(\forall a \in \mathbb{N})\left[a^{2}+a \equiv 0(\bmod 2)\right]$

More proofs

- Similarly, you can show that $(\forall a \in \mathbb{N})\left[a^{2}+a \equiv 0(\bmod 2)\right]$
- Proof: We will simplify notation by assuming that " \equiv " is the same as
" $\equiv(\bmod 2)$ " We have two cases:

1. $a \equiv 0$. Then, $a^{2}+a \equiv 0^{2}+0 \equiv 0$. Done.
2. $a \equiv 1$. Then, $a^{2}+a \equiv 1^{2}+1 \equiv 0$. Done.

Algorithms on Divisibility

1. Modular Exponentiation (Repeated Squaring)
2. Greatest Common Divisor (GCD)

Basic assumptions

- $a+b$ and $a \cdot b$ have unit cost
- This is not true if a, b are too large

First problem

How fast can we compute $a^{n} \bmod m(n, m \in \mathbb{N})$?

First problem

How fast can we compute $a^{n} \bmod m(n, m \in \mathbb{N})$?

1. Obviously, we can compute $a^{n}=\underbrace{a \times a \times \cdots \times a}$ and mod that large number by m.

First problem

How fast can we compute $a^{n} \bmod m(n, m \in \mathbb{N})$?

1. Obviously, we can compute $a^{n}=\underbrace{a \times a \times \cdots \times a}$ and mod that large number by m. n times

- Problems
- Arithmetic overflow in computation of a^{n}
- Modding a large quantity is tough on the FPU

First problem, second approach

2. We could start computing $a \times a \times \cdots \times a$ until the product becomes larger than m, reduce and repeat until we're done.

First problem, second approach

2. We could start computing $a \times a \times \cdots \times a$ until the product becomes larger than m, reduce and repeat until we're done.

- Problems
- Arithmetic overflow in computation of a^{n}
- Modding a large quantity is tough on the FPU

First problem, second approach

2. We could start computing $a \times a \times \cdots \times a$ until the product becomes larger than m, reduce and repeat until we're done.

- Problems
- Arithmetic overflow in computation of a^{n}
- Modding a large quantity is tough on the FPU
- Additionally, we have another nice property...

First problem

- How fast can we compute $a^{n} \bmod m(n, m \in \mathbb{N})$?
We always need n
steps

> We can do it in roughly $\log n$ steps

First problem

- How fast can we compute $a^{n} \bmod m(n, m \in \mathbb{N})$?

```
We always need n
    steps
```


Example

- Computing $3^{64} \bmod 99$ in $\log _{2} 64=6$ steps.

Example

- Computing $3^{64} \bmod 99$ in $\log _{2} 64=6$ steps.
- All \equiv are $\equiv(\bmod 99)$.

Example

- Computing $3^{64} \bmod 99$ in $\log _{2} 64=6$ steps.
- All \equiv are $\equiv(\bmod 99)$.

1. $3^{2^{1}} \equiv 9$

Example

- Computing $3^{64} \bmod 99$ in $\log _{2} 64=6$ steps.
- All \equiv are $\equiv(\bmod 99)$.

1. $3^{2^{1}} \equiv 9$
2. $3^{2^{2}} \equiv\left(3^{2}\right)^{2} \equiv 9^{2} \equiv 81$

Example

- Computing $3^{64} \bmod 99$ in $\log _{2} 64=6$ steps.
- All \equiv are $\equiv(\bmod 99)$.

1. $3^{2^{1}} \equiv 9$
2. $3^{2^{2}} \equiv\left(3^{2}\right)^{2} \equiv 9^{2} \equiv 81$
3. $3^{2^{3}} \equiv\left(3^{2^{2}}\right)^{2} \equiv 81^{2} \equiv 27$

Example

- Computing $3^{64} \bmod 99$ in $\log _{2} 64=6$ steps.
- All \equiv are $\equiv(\bmod 99)$.

1. $3^{2^{1}} \equiv 9$
2. $3^{2^{2}} \equiv\left(3^{2}\right)^{2} \equiv 9^{2} \equiv 81$
3. $3^{2^{3}} \equiv\left(3^{2^{2}}\right)^{2} \equiv 81^{2} \equiv 27$
4. $3^{2^{4}} \equiv\left(3^{2^{3}}\right)^{2} \equiv 27^{2} \equiv 36$

Example

- Computing $3^{64} \bmod 99$ in $\log _{2} 64=6$ steps.
- All \equiv are $\equiv(\bmod 99)$.

1. $3^{2^{1}} \equiv 9$
2. $3^{2^{2}} \equiv\left(3^{2}\right)^{2} \equiv 9^{2} \equiv 81$
3. $3^{2^{3}} \equiv\left(3^{2^{2}}\right)^{2} \equiv 81^{2} \equiv 27$
4. $3^{2^{4}} \equiv\left(3^{2^{3}}\right)^{2} \equiv 27^{2} \equiv 36$
5. $3^{2^{5}} \equiv\left(3^{2^{4}}\right)^{2} \equiv 36^{2} \equiv 9$

Example

- Computing $3^{64} \bmod 99$ in $\log _{2} 64=6$ steps.
- All \equiv are $\equiv(\bmod 99)$.

$$
\begin{aligned}
& \text { 1. } 3^{2^{1}} \equiv 9 \\
& \text { 2. } 3^{2^{2}} \equiv\left(3^{2}\right)^{2} \equiv 9^{2} \equiv 81 \\
& \text { 3. } 3^{2^{3}} \equiv\left(3^{2^{2}}\right)^{2} \equiv 81^{2} \equiv 27 \\
& \text { 4. } 3^{2^{4}} \equiv\left(3^{2^{3}}\right)^{2} \equiv 27^{2} \equiv 36 \\
& \text { 5. } 3^{2^{5}} \equiv\left(3^{2^{4}}\right)^{2} \equiv 36^{2} \equiv 9 \\
& \text { 6. } 3^{2^{6}} \equiv(9)^{2} \equiv 81
\end{aligned}
$$

Example

- Computing $3^{64} \bmod 99$ in $\log _{2} 64=6$ steps.
- All \equiv are $\equiv(\bmod 99)$.

1. $3^{2^{1}} \equiv 9$
2. $3^{2^{2}} \equiv\left(3^{2}\right)^{2} \equiv 9^{2} \equiv 81$
3. $3^{2^{3}} \equiv\left(3^{2^{2}}\right)^{2} \equiv 81^{2} \equiv 27$
4. $3^{2^{4}} \equiv\left(3^{2^{3}}\right)^{2} \equiv 27^{2} \equiv 36$
5. $3^{2^{5}} \equiv\left(3^{2^{4}}\right)^{2} \equiv 36^{2} \equiv 9$
6. $3^{2^{6}} \equiv(9)^{2} \equiv 81$

- Aha! $3^{64}=3^{2^{6}} \equiv 81$

Good news, bad news

- Good news By using repeated squaring, can compute $a^{2^{\ell}} \bmod m$ quickly (roughly $\ell=\log _{2} 2^{\ell}$ steps)

Good news, bad news

- Good news By using repeated squaring, can compute $a^{2^{\ell}} \bmod m$ quickly (roughly $\ell=\log _{2} 2^{\ell}$ steps)
- Bad news What if our exponent is not a power of 2?

Example

- Computing $3^{27} \bmod 99$ with the same method

Example

- Computing $3^{27} \bmod 99$ with the same method
- All \equiv are $\equiv(\bmod 99)$.
- $3^{1} \equiv 3$
- $3^{2} \equiv 9$
- $3^{2^{2}} \equiv\left(3^{2}\right)^{2} \equiv 9^{2} \equiv 81$
- $3^{2^{3}} \equiv\left(3^{2^{2}}\right)^{2} \equiv 81^{2} \equiv 27$
- $3^{2^{4}} \equiv\left(3^{2^{3}}\right)^{2} \equiv 27^{2} \equiv 36$

Example

- Computing $3^{27} \bmod 99$ with the same method
- All \equiv are $\equiv(\bmod 99)$.
- $3^{1} \equiv 3$
- $3^{2} \equiv 9$
- $3^{2^{2}} \equiv\left(3^{2}\right)^{2} \equiv 9^{2} \equiv 81$
- $3^{2^{3}} \equiv\left(3^{2^{2}}\right)^{2} \equiv 81^{2} \equiv 27$
- $3^{2^{4}} \equiv\left(3^{2^{3}}\right)^{2} \equiv 27^{2} \equiv 36$
- $3^{27}=3^{16} \times 3^{8} \times 3^{2} \times 3^{1} \equiv 36 \times 27 \times 9 \times 3$

Example (contd.)

- To avoid large numbers, reduce product as you go

Example (contd.)

- To avoid large numbers, reduce product as you go
- $3^{27}=3^{16} \times 3^{8} \times 3^{2} \times 3^{1} \equiv 36 \times 27 \times 9 \times 3 \equiv$

$$
(36 \times 27) \times(9 \times 3) \equiv 81 \times 27 \equiv 9
$$

Exercise

- Solve the following for r please!

$$
5^{34} \equiv r(\bmod 117)
$$

Algorithm to compute $a^{n}(\bmod m)$ in $\log n$ steps

- Step 1 Write $n=2^{q_{1}}+2^{q_{2}}+\cdots+2^{q_{r}}, q_{1}<q_{2}<\cdots<q_{r}$

Algorithm to compute $a^{n}(\bmod m)$ in $\log n$ steps

- Step 1 Write $n=2^{q_{1}}+2^{q_{2}}+\cdots+2^{q_{r}}, q_{1}<q_{2}<\cdots<q_{r}$
- Step 2 Note that $a^{n}=a^{2^{q_{1}}+2^{q_{2}}+\cdots+2^{q_{r}}}=a^{2^{q_{1}}} \times \cdots \times a^{2^{q_{r}}}$

Algorithm to compute $a^{n}(\bmod m)$ in $\log n$ steps

- Step 1 Write $n=2^{q_{1}}+2^{q_{2}}+\cdots+2^{q_{r}}, q_{1}<q_{2}<\cdots<q_{r}$
- Step 2 Note that $a^{n}=a^{2^{q_{1}}+2^{q_{2}}+\cdots+2^{q_{r}}}=a^{2^{q_{1}}} \times \cdots \times a^{2^{q_{r}}}$
- Step 3 Use repeated squaring to compute

$$
\begin{aligned}
& a^{2^{0}}, a^{2^{1}}, a^{2^{2}}, \ldots, a^{2^{q_{r}}} \bmod m \\
& \text { using } a^{2^{i+1}} \equiv\left(a^{2^{i}}\right)^{2}(\bmod m)
\end{aligned}
$$

Algorithm to compute $a^{n}(\bmod m)$ in $\log n$ steps

- Step 1 Write $n=2^{q_{1}}+2^{q_{2}}+\cdots+2^{q_{r}}, q_{1}<q_{2}<\cdots<q_{r}$
- Step 2 Note that $a^{n}=a^{2^{q_{1}}+2^{q_{2}}+\cdots+2^{q_{r}}}=a^{2^{q_{1}}} \times \cdots \times a^{2^{q_{r}}}$
- Step 3 Use repeated squaring to compute

$$
a^{2^{0}}, a^{2^{1}}, a^{2^{2}}, \ldots, a^{2^{q_{r}}} \bmod m
$$

using $a^{2^{i+1}} \equiv\left(a^{2^{i}}\right)^{2}(\bmod m)$

- Step 4 Compute $a^{2^{q_{1}}} \times \cdots \times a^{2^{q_{r}}}$ mod m reducing when necessary to avoid large numbers

The key step

- The key step is Step \#3. Use repeated squaring to compute

$$
\begin{aligned}
& a^{2^{2^{0}}}, a^{2^{1}}, a^{2^{2}}, \ldots, a^{2^{q_{r}}} \bmod m \\
& \text { using } a^{2^{i+1}} \equiv\left(a^{2^{i}}\right)^{2}(\bmod m)
\end{aligned}
$$

The key step

- The key step is Step \#3. Use repeated squaring to compute

$$
\begin{aligned}
& a^{2^{0}}, a^{2^{1}}, a^{2^{2}}, \ldots, a^{2^{q_{r}}} \bmod m \\
& \text { using } a^{2^{i+1}} \equiv\left(a^{2^{2}}\right)^{2}(\bmod m)
\end{aligned}
$$

- When computing $a^{2^{i+1}} \bmod m$, already have computed $\left(a^{2^{i}}\right)^{2}(\bmod m)$

The key step

- The key step is Step \#3. Use repeated squaring to compute

$$
a^{2^{0}}, a^{2^{1}}, a^{2^{2}}, \ldots, a^{2^{q_{r}}} \bmod m
$$

$$
\text { using } a^{2^{i+1}} \equiv\left(a^{2^{i}}\right)^{2}(\bmod m)
$$

- When computing $a^{2^{i+1}} \bmod m$, already have computed $\left(a^{2^{i}}\right)^{2}(\bmod m)$
- Note that all numbers are below m because we reduce mod m every step of the way

The key step

- The key step is Step \#3. Use repeated squaring to compute

$$
a^{2^{0}}, a^{2^{1}}, a^{2^{2}}, \ldots, a^{2^{q_{r}}} \bmod m
$$

$$
\text { using } a^{2^{i+1}} \equiv\left(a^{2^{i}}\right)^{2}(\bmod m)
$$

- When computing $a^{2^{i+1}} \bmod m$, already have computed $\left(a^{2^{i}}\right)^{2}(\bmod m)$
- Note that all numbers are below m because we reduce mod m every step of the way
- So $\left(a^{2^{i}}\right)^{2}$ is unit cost and anything mod \mathbf{m} is also unit cost!

Second problem: Greatest Common Divisor (GCD)

- If $a, b \in \mathbb{N}^{\neq 0}$, then the GCD of a, b is the largest non-zero integer n such that $n \mid a$ and $n \mid b$

Second problem: Greatest Common Divisor (GCD)

- If $a, b \in \mathbb{N}^{\neq 0}$, then the GCD of a, b is the largest non-zero integer n such that $n \mid a$ and $n \mid b$
- What is the GCD of...
- 10 and 15 ?

Second problem: Greatest Common Divisor (GCD)

- If $a, b \in \mathbb{N}^{\neq 0}$, then the GCD of a, b is the largest non-zero integer n such that $n \mid a$ and $n \mid b$
- What is the GCD of...
- 10 and 15 ? 5
- 12 and 90 ?

Second problem: Greatest Common Divisor (GCD)

- If $a, b \in \mathbb{N}^{\neq 0}$, then the GCD of a, b is the largest non-zero integer n such that $n \mid a$ and $n \mid b$
- What is the GCD of...
- 10 and 15 ? 5
- 12 and 90? 6
- 20 and 29 ?

Second problem: Greatest Common Divisor (GCD)

- If $a, b \in \mathbb{N}^{\neq 0}$, then the GCD of a, b is the largest non-zero integer n such that $n \mid a$ and $n \mid b$
- What is the GCD of...
- 10 and 15 ? 5
- 12 and 90? 6
- 20 and 29? 1 (20 and 29 are called co-prime or relatively prime)
- 153 and 181

Second problem: Greatest Common Divisor (GCD)

- If $a, b \in \mathbb{N}^{\neq 0}$, then the GCD of a, b is the largest non-zero integer n such that $n \mid a$ and $n \mid b$
- What is the GCD of...
- 10 and 15 ? 5
- 12 and 90? 6
- 20 and 29? 1 (20 and 29 are called co-prime or relatively prime)
- 153 and 1811 (also co-prime)

Euclid's GCD algorithm

- Recall If $a \equiv 0(\bmod m)$ and $b \equiv 0(\bmod m)$, then $a-b \equiv 0(\bmod m)$

Euclid's GCD algorithm

- Recall If $a \equiv 0(\bmod m)$ and $b \equiv 0(\bmod m)$, then $a-b \equiv 0(\bmod m)$
- The GCD algorithm finds the greatest common divisor by executing this recursion (assume a > b)

$$
G C D(a, b)=G C D(a, b-a)
$$

Until its arguments are the same.

Greatest Common Divisor (GCD)

- Recall If $a \equiv 0(\bmod m)$ and $b \equiv 0(\bmod m)$, then $a-b \equiv 0(\bmod m)$
- The GCD algorithm finds the greatest common divisor by executing this recursion (assume $a>b$)

$$
G C D(a, b)=G C D(a, b-a)
$$

Until its arguments are the same.

- Question If we implement this in a programming language, it can only be done recursively

Greatest Common Divisor (GCD)

- Recall If $a \equiv 0(\bmod m)$ and $b \equiv 0(\bmod m)$, then $a-b \equiv 0(\bmod m)$
- The GCD algorithm finds the greatest common divisor by executing this recursion (assume $a>b$)

$$
G C D(a, b)=G C D(a, b-a) \quad \text { Tail }
$$

Until its arguments are the same.

- Question If we implement this in a programming language, it can only be done recursively

Something Else (What)

```
left = a;
right = b;
while(left != right){
    if(left > right)
        left = left - right;
        else
        right = right - left;
}
print "GCD is: " left; // or right
```


GCD example

- $\operatorname{GCD}(18,100)=$
$\operatorname{GCD}(18,100-18)=\operatorname{GCD}(18,82)=$ $\operatorname{GCD}(18,82-18=\operatorname{GCD}(18,64)=$ $\operatorname{GCD}(18,64-18)=\operatorname{GCD}(18,46)=$ $\operatorname{GCD}(18,46-18)=\operatorname{GCD}(18,28)=$ $\operatorname{GCD}(18,28-18)=\operatorname{GCD}(18,10)=$ $\operatorname{GCD}(18-10,10)=\operatorname{GCD}(8,10)=$ GCD (8, 10-8)= GCD(8, 2) = $\operatorname{GCD}(8-2,2)=\operatorname{GCD}(6,2)=$ $\operatorname{GCD}(6-2,2)=\operatorname{GCD}(4,2)=$ $\operatorname{GCD}(4-2,2)=\operatorname{GCD}(2,2)=2$

GCD example

- $\operatorname{GCD}(18,100)=$
$\operatorname{GCD}(18,100-18)=\operatorname{GCD}(18,82)=$ $\operatorname{GCD}(18,82-18=\operatorname{GCD}(18,64)=$ $\operatorname{GCD}(18,64-18)=\operatorname{GCD}(18,46)=$ $\operatorname{GCD}(18,46-18)=\operatorname{GCD}(18,28)=$ $\operatorname{GCD}(18,28-18)=\operatorname{GCD}(18,10)=$ $\operatorname{GCD}(18-10,10)=\operatorname{GCD}(8,10)=$ GCD (8, 10-8)= GCD(8, 2) = $\operatorname{GCD}(8-2,2)=\operatorname{GCD}(6,2)=$ $\operatorname{GCD}(6-2,2)=\operatorname{GCD}(4,2)=$ $\operatorname{GCD}(4-2,2)=\operatorname{GCD}(2,2)=2$

Given integers a, b with $a>b$ (without loss of generality), approximately how many steps does this algorithm take?

GCD example

- $\operatorname{GCD}(18,100)=$
$\operatorname{GCD}(18,100-18)=\operatorname{GCD}(18,82)=$ $\operatorname{GCD}(18,82-18=\operatorname{GCD}(18,64)=$ $\operatorname{GCD}(18,64-18)=\operatorname{GCD}(18,46)=$ $\operatorname{GCD}(18,46-18)=\operatorname{GCD}(18,28)=$ $\operatorname{GCD}(18,28-18)=\operatorname{GCD}(18,10)=$ $\operatorname{GCD}(18-10,10)=\operatorname{GCD}(8,10)=$ GCD (8, 10-8)= GCD(8, 2) = $\operatorname{GCD}(8-2,2)=\operatorname{GCD}(6,2)=$ $\operatorname{GCD}(6-2,2)=\operatorname{GCD}(4,2)=$ $\operatorname{GCD}(4-2,2)=\operatorname{GCD}(2,2)=2$

Can we do better?

- $\operatorname{GCD}(18,100)=$

$\operatorname{GCD}(18,100-18)=\operatorname{GCD}(18,82)=$ $\operatorname{GCD}(18,82-18=\operatorname{GCD}(18,64)=$ $\operatorname{GCD}(18,64-18)=\operatorname{GCD}(18,46)=$ $\operatorname{GCD}(18,46-18)=\operatorname{GCD}(18,28)=$ $\operatorname{GCD}(18,28-18)=\operatorname{GCD}(18,10)=$ $\operatorname{GCD}(18-10,10)=\operatorname{GCD}(8,10)=$ $\operatorname{GCD}(8,10-8)=\operatorname{GCD}(8,2)=$ $\operatorname{GCD}(8-2,2)=\operatorname{GCD}(6,2)=$ $\operatorname{GCD}(6-2,2)=\operatorname{GCD}(4,2)=$ $\operatorname{GCD}(4-2,2)=\operatorname{GCD}(2,2)=2$

Can we do better?

- $\operatorname{GCD}(18,100)=$

$$
\operatorname{GCD}(18,100-18)=\operatorname{GCD}(18,82)=
$$

$$
\operatorname{GCD}(18,82-18)=\operatorname{GCD}(18,64)=
$$

$$
\operatorname{GCD}(18,64-18)=\operatorname{GCD}(18,46)=
$$

$$
\operatorname{GCD}(18,46-18)=\operatorname{GCD}(18,28)=
$$

$$
\operatorname{GCD}(18,28-18)=\operatorname{GCD}(18,10)=
$$

$$
\operatorname{GCD}(18-10,10)=\operatorname{GCD}(8,10)=
$$

 \(\operatorname{GCD}(18,100-5 \times 18)=\operatorname{GCD}(18\),
 10) =
 $$
\operatorname{GCD}(8,10-8)=\operatorname{GCD}(8,2)=
$$

 \(\operatorname{GCD}(18-10,10)=\operatorname{GCD}(8,10)=\)
 $$
\operatorname{GCD}(8-2,2)=\operatorname{GCD}(6,2)=
$$

 \(\operatorname{GCD}(8,10-8)=\operatorname{GCD}(8,2)=\)
 \(\operatorname{GCD}(8-3 \times 2,2)=\operatorname{GCD}(2,2)=2\)
 From 10 to 4 steps!

How fast is this new algorithm?

- Given non-zero integers a, b with $a>b$, roughly how many steps does this new algorithm take to compute GCD (a, b) ?

How fast is this new algorithm?

- Given non-zero integers a, b with $a>b$, roughly how many steps does this new algorithm take to compute GCD (a, b) ?

- In fact, it takes $\log _{\phi} a$, where $\phi=\frac{1+\sqrt{5}}{2}$ is the golden ratio.
- Proof by Gabriel Lamé in 1844, considered by some to be the first ever result in Algorithmic Complexity theory.

STOP

RECORDING

