START

RECORDING

Disprove by Counterexample and Prove by Example

Disprove by Counterexample

Conjecture

- Conjecture
 - Let tens(n) be the tens digit of n
 - Let ones(n) be the ones digit of n
 - Let diff(n) = |tens(n) ones(n)|
 - Bill thinks that $(\forall n \in \mathbb{N})[DIFF(n^2) \leq 6]$

Conjecture

- Conjecture
 - Let tens(n) be the tens digit of n
 - Let ones(n) be the ones digit of n
 - Let diff(n) = |tens(n) ones(n)|
 - Bill thinks that $(\forall n \in \mathbb{N})[DIFF(n^2) \leq 6]$
- To PROVE this we would need to prove it for EVERY n

Conjecture

- Conjecture
 - Let tens(n) be the tens digit of n
 - Let ones(n) be the ones digit of n
 - Let diff(n) = |tens(n) ones(n)|
 - Bill thinks that $(\forall n \in \mathbb{N})[DIFF(n^2) \le 6]$
- To PROVE this we would need to prove it for EVERY n
- To DISPROVE it we only need to find ONE n for which it is false.

Data for n = 4, 5, 6, 7, 8, 9

n	n^2	$DIFF(n^2)$
4	16	5
5	25	3
6	36	3
7	49	5
8	64	2
9	81	7

Data for n = 4, 5, 6, 7, 8, 9

n	n^2	$DIFF(n^2)$
4	16	5
5	25	3
6	36	3
7	49	5
8	64	2
9	81	7

• Keep doing this until get to counterexample.

Data for n = 4, 5, 6, 7, 8, 9

n	n^2	$DIFF(n^2)$
4	16	5
5	25	3
6	36	3
7	49	5
8	64	2
9	81	7

- Keep doing this until get to counterexample.
- Then conjecture will be
 - We have disproven the conjecture since for 9^2 the diff is 7.

Now What?

• The following questions remain

1) Maybe the conjecture is true past some point. Maybe $(\exists n_0)(\forall n \ge n_0)[\operatorname{diff}(n^2) \le 6]$

2) Maybe 6 is to low. So maybe

 $(\forall n \ge 4)[\operatorname{diff}(n^2) \le 7]$

3) Maybe item 2 is incorrect but holds past some point, so $(\exists n_0)(\forall n \ge n_0)[\operatorname{diff}(n^2) \le 7]$

Prove By Example

- We just showed that
 - You can DISPROVE $(\forall x)[P(x)]$ by showing just ONE x for which $\neg P(x)$ is TRUE.

Prove By Example

- We just showed that
 - You can DISPROVE $(\forall x)[P(x)]$ by showing just ONE x for which $\neg P(x)$ is TRUE.
- Same Idea but stated differently:
 - You can PROVE $(\exists x)[P(x)]$ by showing just ONE x for which P(x) is TRUE.

Prove By Example

- We just showed that
 - You can DISPROVE $(\forall x)[P(x)]$ by showing just ONE x for which $\neg P(x)$ is TRUE.
- Same Idea but stated differently:
 - You can PROVE $(\exists x)[P(x)]$ by showing just ONE x for which P(x) is TRUE.
- In either case we need to show that some *x* with some property exists.

Constructive proofs in Number Theory (and one non-constructive one)

- Claim There exists a natural number that you *cannot* write as a sum of three squares of natural numbers.
 - Examples of numbers you *can* write as a sum of three squares
 - $0 = 0^2 + 0^2 + 0^2$
 - $1 = 1^2 + 0^2 + 0^2$
 - $2 = 1^2 + 1^2 + 0^2$
- Try to find a number that *cannot* be written as such.

Proof

- The natural number 7 cannot be written as the sum of three squares.
- This we can prove by case analysis
 - 1. Can't use 3, since $3^2 = 9 > 7$
 - 2. Can't use 2 more than once, since $2^2 + 2^2 = 8 > 7$
 - 3. So, we can use 2, one or zero times.
 - a) If we use 2 once, we have $7 = 2^2 + a^2 + b^2 \le 2^2 + 1^2 + 1^2 = 6 < 7$
 - b) If we use 2 zero times, the maximum value is $1^2 + 1^2 + 1^2 = 3 < 7$
 - 4. Done!

Let's Go Further!

- We showed that there exists x (namely 7) so that x cannot be written as the sum of 3 squares.
 - This is the origin of 7 being a lucky number.

Let's Go Further!

- We showed that there exists x (namely 7) so that x cannot be written as the sum of 3 squares.
 - This is the origin of 7 being a lucky number.
- That last sentence is not true. Emily no longer believes anything I say since
 - I lied in Ramsey Theory every other day.
 - (More like 4 times a day...)

Let's Go Further!

- We showed that there exists x (namely 7) so that x cannot be written as the sum of 3 squares.
 - This is the origin of 7 being a lucky number.
- That last sentence is not true. Emily no longer believes anything I say since
 - I lied in Ramsey Theory every other day.
 - (More like 4 times a day...)
- But seriously, are there more numbers that cannot be written as the sum of three squares?
 - This is not our original question, but its a good question, so we pursue it.

- In Breakout Rooms, Find
 - Other numbers that are NOT the sum of 3 squares
 - Try to prove there are an INFINITE number of numbers that are NOT the sum of 3 squares

n	n as a sum of squares	Number of squares ≤ 3
1	12	Y
2	$1^2 + 1^2$	Y
3	$1^2 + 1^2 + 1^2$	Y
4	2 ²	Y
5	$2^2 + 1^2$	Y
6	$2^2 + 1^2 + 1^2$	Y
7	$2^2 + 1^2 + 1^2 + 1^2$	Ν
8	$2^2 + 2^2$	Y

n	n as a sum of squares	Number of squares ≤ 3
9	32	Y
10	$3^2 + 1^2$	Y
11	$3^2 + 1^2 + 1^2$	Y
12	$2^2 + 2^2 + 2^2$	Y
13	$3^2 + 2^2$	Y
14	$3^2 + 2^2 + 1^2$	Y
15	$3^2 + 2^2 + 1^2 + 1^2$	Ν
16	4 ²	Υ

n	n as a sum of squares	Number of squares ≤ 3
17	$4^2 + 1^2$	Y
18	$3^2 + 3^2$	Y
19	$3^2 + 3^2 + 1^2$	Y
20	$4^2 + 2^2$	Y
21	$4^2 + 2^2 + 1^2$	Y
22	$3^2 + 3^2 + 2^2$	Y
23	$3^2 + 3^2 + 2^2 + 1^2$	Ν
24	$4^2 + 2^2 + 2^2$	Y

• If $n \equiv 7 \pmod{8}$, then *n* CANNOT be written as the sum of 3 squares

Mod 8	
$0^2 \equiv 0$	$4^2 \equiv 0$
$1^2 \equiv 1$	$5^2 \equiv 1$
$2^2 \equiv 4$	$6^2 \equiv 4$
$3^2 \equiv 1$	$7^2 \equiv 1$

So, is there some way for three numbers from 0, 1, 4 to add up to $7(mod \ 8)$?

Case 1 Use zero 4's. Then max is $1+1+1\equiv 3 < 7$.

Case 2 Use exactly one 4. Then we have to get 3 with two of $\{0,1\}$, but the max is $1+1 \equiv 2 < 4$.

Case 3 Use two 4's 4+4+0=1, $4+4+1 \equiv 2$.

Case 4 Use three 4's $4+4+4 \equiv 4$.

What do we know?

• Theorem: If $n \equiv 7 \pmod{8}$ then 7 cannot be written as the sum of 3 squares.

What do we know?

- Theorem: If $n \equiv 7 \pmod{8}$ then 7 cannot be written as the sum of 3 squares.
- Conjecture: The only numbers that cannot be written as the sum of 3 squares are those that are ≡ 7 (mod 8).

What do we know?

- Theorem: If $n \equiv 7 \pmod{8}$ then 7 cannot be written as the sum of 3 squares.
- Conjecture: The only numbers that cannot be written as the sum of 3 squares are those that are ≡ 7 (mod 8).
- Is this true? You may investigate it on a Homework.

Your turn, class!

- Let's break into breakout rooms and prove the following theorems
- 1. There exists an integer *n* that can be written in *two ways* as a sum of two prime numbers.
- 2. There is a **perfect square** that can be written as a sum of two other **perfect squares**.
- 3. Suppose $r, s \in \mathbb{Z}$. Then, $(\exists k \in \mathbb{Z})[22r + 18s = 2k]$

• Theorem There exists a pair of irrational numbers *a* and *b* such that a^b is a rational number.

- For the following proof, we will assume known that $\sqrt{2} \notin \mathbb{Q}$.
- This is a *fact*, which we will prove later on in this section.
- Now, on to the proof!

• **Theorem** There exists a pair of irrational numbers a and b such that a^b is a rational number.

- Theorem There exists a pair of irrational numbers *a* and *b* such that a^b is a rational number.
- **Proof** Let $a = b = \sqrt{2}$. Since $\sqrt{2}$ is irrational, a and b are both irrational. Is $a^b = (\sqrt{2})^{\sqrt{2}}$ rational? Two cases

- Theorem There exists a pair of irrational numbers *a* and *b* such that a^b is a rational number.
- Proof Let a = b = √2. Since √2 is irrational, a and b are both irrational. Is a^b = (√2)^{√2} rational? Two cases
 1. If √2^{√2} is rational, then we have proven the result. Done.

- Theorem There exists a pair of irrational numbers *a* and *b* such that a^b is a rational number.
- **Proof** Let $a = b = \sqrt{2}$. Since $\sqrt{2}$ is irrational, a and b are both irrational. Is $a^b = (\sqrt{2})^{\sqrt{2}}$ rational? Two cases

1. If $\sqrt{2}^{\sqrt{2}}$ is rational, then we have proven the result. Done.

2. If $\sqrt{2}^{\sqrt{2}}$ is irrational, then we will name it c. Then, observe that $c^{\sqrt{2}}$ is rational, since $c^{\sqrt{2}} = \left(\left(\sqrt{2}\right)^{\sqrt{2}}\right)^{\sqrt{2}} = \left(\sqrt{2}\right)^2 = 2 \in \mathbb{Q}$. Since both c and $\sqrt{2}$ are irrationals, but $c^{\sqrt{2}}$ is rational, we are done.

Analysis of proof

- Suppose $x = \sqrt{2}$, an irrational. From the previous theorem, we know
 - a) Either that a = x, b = x are two irrationals that satisfy the condition , OR
 - b) That $a = x^x$, b = x are the two irrationals.
- But we don't care which pair it is! As long as one exists!

STOP RECORDING