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Disprove by Counterexample 
and Prove by Example



Disprove by Counterexample



Conjecture

• Conjecture
• Let 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) be the tens digit of n
• Let 𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) be the ones digit of n
• Let 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) = |𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) − 𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)|
• Bill thinks that (∀ 𝑡𝑡 ∈ ℕ)[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑡𝑡2 ≤ 6]
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• To PROVE this we would need to prove it for EVERY n
• To DISPROVE it we only need to find ONE n for which it is false.



Data for n = 4, 5, 6, 7, 8, 9

𝑡𝑡 𝑡𝑡2 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑡𝑡2

4 16 5
5 25 3
6 36 3
7 49 5
8 64 2
9 81 7
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Data for n = 4, 5, 6, 7, 8, 9

• Keep doing this until get to counterexample.
• Then conjecture will be

• We have disproven the conjecture since for 92 the diff is 7.

𝑡𝑡 𝑡𝑡2 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑡𝑡2
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Now What?

• The following questions remain
1) Maybe the conjecture is true past some point. Maybe

(∃ 𝑡𝑡0)(∀ 𝑡𝑡 ≥ 𝑡𝑡0)[diff 𝑡𝑡2 ≤ 6]
2) Maybe 6 is to low. So maybe

(∀ 𝑡𝑡 ≥ 4)[diff 𝑡𝑡2 ≤ 7]
3) Maybe item 2 is incorrect but holds past some point, so

(∃ 𝑡𝑡0)(∀ 𝑡𝑡 ≥ 𝑡𝑡0)[ diff 𝑡𝑡2 ≤ 7]



Prove By Example

• We just showed that
• You can DISPROVE (∀ 𝑥𝑥)[𝑃𝑃(𝑥𝑥)] by showing just ONE 𝑥𝑥 for which 

¬ 𝑃𝑃(𝑥𝑥) is TRUE.
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Prove By Example

• We just showed that
• You can DISPROVE (∀ 𝑥𝑥)[𝑃𝑃(𝑥𝑥)] by showing just ONE 𝑥𝑥 for which 

¬ 𝑃𝑃(𝑥𝑥) is TRUE.
• Same Idea but stated differently:

• You can PROVE (∃ 𝑥𝑥)[𝑃𝑃(𝑥𝑥)] by showing just ONE 𝑥𝑥 for which 
𝑃𝑃(𝑥𝑥) is TRUE.

• In either case we need to show that some 𝑥𝑥 with some property 
exists.



Constructive proofs in Number 
Theory 

(and one non-constructive one)



Our first constructive proof

• Claim There exists a natural number that you cannot write as a sum 
of three squares of natural numbers.

• Examples of numbers you can write as a sum of three squares 
• 0 = 02 + 02 + 02

• 1 = 12 + 02 + 02

• 2 = 12 + 12 + 02

• Try to find a number that cannot be written as such.



Proof

• The natural number 7 cannot be written as the sum of three squares.
• This we can prove by case analysis

1. Can’t use 3, since 32 = 9 > 7
2. Can’t use 2 more than once, since 22 + 22 = 8 > 7
3. So, we can use 2, one or zero times.

a) If we use 2 once, we have 7 = 22 + 𝑎𝑎2 + 𝑏𝑏2 ≤ 22 + 12 + 12 = 6 < 7
b) If we use 2 zero times, the maximum value is 12 + 12 + 12 = 3 < 7

4. Done!



Let’s Go Further!

• We showed that there exists x (namely 7) so that x cannot be written as the sum 
of 3 squares.

• This is the origin of 7 being a lucky number.
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• I lied in Ramsey Theory every other day.
• (More like 4 times a day…)



Let’s Go Further!

• We showed that there exists x (namely 7) so that x cannot be written as the sum 
of 3 squares.

• This is the origin of 7 being a lucky number.
• That last sentence is not true. Emily no longer believes anything I say since 

• I lied in Ramsey Theory every other day.
• (More like 4 times a day…)

• But seriously, are there more numbers that cannot be written as the sum of three 
squares?

• This is not our original question, but its a good question, so we pursue it.



Sum of Three Squares

• In Breakout Rooms, Find
• Other numbers that are NOT the sum of 3 squares
• Try to prove there are an INFINITE number of numbers that are NOT the sum 

of 3 squares



Sum of Three Squares

𝑡𝑡 𝑡𝑡 as a sum of squares Number of squares ≤ 3
1 12 Y
2 12 + 12 Y
3 12 + 12 + 12 Y
4 22 Y
5 22 + 12 Y
6 22 + 12 + 12 Y
7 22 + 12 + 12 + 12 N
8 22 + 22 Y



Sum of Three Squares

𝑡𝑡 𝑡𝑡 as a sum of squares Number of squares ≤ 3
9 32 Y

10 32 + 12 Y
11 32 + 12 + 12 Y
12 22 + 22 + 22 Y
13 32 + 22 Y
14 32 + 22 + 12 Y
15 32 + 22 + 12 + 12 N
16 42 Y



Sum of Three Squares

𝑡𝑡 𝑡𝑡 as a sum of squares Number of squares ≤ 3
17 42 + 12 Y
18 32 + 32 Y
19 32 + 32 + 12 Y
20 42 + 22 Y
21 42 + 22 + 12 Y
22 32 + 32 + 22 Y
23 32 + 32 + 22 + 12 N
24 42 + 22 + 22 Y



Sum of Three Squares

• If 𝑡𝑡 ≡ 7 (𝑚𝑚𝑜𝑜𝑑𝑑 8), then 𝑡𝑡 CANNOT be written as the sum of 3 squares

Mod 8

02 ≡ 0 42 ≡ 0
12 ≡ 1 52 ≡ 1
22 ≡ 4 62 ≡ 4
32 ≡ 1 72 ≡ 1



Sum of Three Squares

So, is there some way for three numbers from 0, 1, 4 to add up to 7(𝑚𝑚𝑜𝑜𝑑𝑑 8)?

Case 1 Use zero 4’s. Then max is 1+1+1≡3 < 7.

Case 2 Use exactly one 4. Then we have to get 3 with two of {0,1}, but the 
max is 1+1 ≡ 2 < 4.

Case 3 Use two 4’s 4+4+0=1, 4+4+1 ≡ 2.

Case 4 Use three 4’s 4+4+4 ≡ 4. 



What do we know?

• Theorem: If 𝑡𝑡 ≡ 7 (mod 8) then 7 cannot be written as the sum of 3
squares.
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What do we know?

• Theorem: If 𝑡𝑡 ≡ 7 (mod 8) then 7 cannot be written as the sum of 3
squares.

• Conjecture: The only numbers that cannot be written as the sum of 3 
squares are those that are ≡ 7 mod 8 .

• Is this true? You may investigate it on a Homework.



Your turn, class!

• Let’s break into breakout rooms and prove the following theorems

1. There exists an integer 𝑡𝑡 that can be written in two ways as a sum 
of two prime numbers.

2. There is a perfect square that can be written as a sum of two other 
perfect squares.

3. Suppose 𝑟𝑟, 𝑡𝑡 ∈ ℤ. Then, (∃𝑘𝑘 ∈ ℤ)[ 22𝑟𝑟 + 18𝑡𝑡 = 2𝑘𝑘]



Our first non-constructive proof

• Theorem There exists a pair of irrational numbers 𝑎𝑎 and 𝑏𝑏 such that 
𝑎𝑎𝑏𝑏 is a rational number.



Our first non-constructive proof

• For the following proof, we will assume known that 2 ∉ ℚ.
• This is a fact, which we will prove later on in this section.
• Now, on to the proof!
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Our first non-constructive proof

• Theorem There exists a pair of irrational numbers 𝑎𝑎 and 𝑏𝑏 such that 
𝑎𝑎𝑏𝑏 is a rational number.

• Proof Let 𝑎𝑎 = 𝑏𝑏 = 2. Since 2 is irrational, 𝑎𝑎 and 𝑏𝑏 are both 
irrational. Is 𝑎𝑎𝑏𝑏 = ( 2) 2 rational? Two cases

1. If 2
2

is rational, then we have proven the result. Done.

2. If 2
2

is irrational, then we will name it 𝑐𝑐. Then, observe that 𝑐𝑐 2 is 

rational, since 𝑐𝑐 2 = 2
2

2

= 2
2

= 2 ∈ ℚ. Since both 𝑐𝑐 and 2

are irrationals, but 𝑐𝑐 2 is rational, we are done.    



Analysis of proof

• Suppose 𝑥𝑥 = 2, an irrational. From the previous theorem, we know
a) Either that 𝑎𝑎 = 𝑥𝑥, 𝑏𝑏 = 𝑥𝑥 are two irrationals that satisfy the condition , OR
b) That 𝑎𝑎 = 𝑥𝑥𝑥𝑥 , 𝑏𝑏 = 𝑥𝑥 are the two irrationals.

• But we don’t care which pair it is! As long as one exists!
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