START

RECORDING

Disprove by Counterexample and Prove by Example

Disprove by Counterexample

Conjecture

- Conjecture
- Let tens (n) be the tens digit of n
- Let ones (n) be the ones digit of n
- Let $\operatorname{diff}(n)=|\operatorname{tens}(n)-\operatorname{ones}(n)|$
- Bill thinks that $(\forall n \in \mathbb{N})\left[\operatorname{DIFF}\left(n^{2}\right) \leq 6\right]$

Conjecture

- Conjecture
- Let tens (n) be the tens digit of n
- Let ones (n) be the ones digit of n
- Let $\operatorname{diff}(n)=|t e n s(n)-\operatorname{ones}(n)|$
- Bill thinks that $(\forall n \in \mathbb{N})\left[\operatorname{DIFF}\left(n^{2}\right) \leq 6\right]$
- To PROVE this we would need to prove it for EVERY n

Conjecture

- Conjecture
- Let tens (n) be the tens digit of n
- Let ones (n) be the ones digit of n
- Let $\operatorname{diff}(n)=|\operatorname{tens}(n)-\operatorname{ones}(n)|$
- Bill thinks that $(\forall n \in \mathbb{N})\left[\operatorname{DIFF}\left(n^{2}\right) \leq 6\right]$
- To PROVE this we would need to prove it for EVERY n
- To DISPROVE it we only need to find ONE n for which it is false.

Data for $\mathrm{n}=4,5,6,7,8,9$

n	n^{2}	$\operatorname{DIFF}\left(n^{2}\right)$
4	16	5
5	25	3
6	36	3
7	49	5
8	64	2
9	81	7

Data for $n=4,5,6,7,8,9$

n	n^{2}	$\operatorname{DIFF}\left(n^{2}\right)$
4	16	5
5	25	3
6	36	3
7	49	5
8	64	2
9	81	7

- Keep doing this until get to counterexample.

Data for $n=4,5,6,7,8,9$

n	n^{2}	$\operatorname{DIFF}\left(n^{2}\right)$
4	16	5
5	25	3
6	36	3
7	49	5
8	64	2
9	81	7

- Keep doing this until get to counterexample.
- Then conjecture will be
- We have disproven the conjecture since for 9^{2} the diff is 7 .

Now What?

- The following questions remain

1) Maybe the conjecture is true past some point. Maybe

$$
\left(\exists n_{0}\right)\left(\forall n \geq n_{0}\right)\left[\operatorname{diff}\left(n^{2}\right) \leq 6\right]
$$

2) Maybe 6 is to low. So maybe

$$
(\forall n \geq 4)\left[\operatorname{diff}\left(n^{2}\right) \leq 7\right]
$$

3) Maybe item 2 is incorrect but holds past some point, so

$$
\left(\exists n_{0}\right)\left(\forall n \geq n_{0}\right)\left[\operatorname{diff}\left(n^{2}\right) \leq 7\right]
$$

Prove By Example

- We just showed that
- You can DISPROVE $(\forall x)[P(x)]$ by showing just ONE x for which $\neg P(x)$ is TRUE.

Prove By Example

- We just showed that
- You can DISPROVE $(\forall x)[P(x)]$ by showing just ONE x for which $\neg P(x)$ is TRUE.
- Same Idea but stated differently:
- You can PROVE $(\exists x)[P(x)]$ by showing just ONE x for which $P(x)$ is TRUE.

Prove By Example

- We just showed that
- You can DISPROVE $(\forall x)[P(x)]$ by showing just ONE x for which $\neg P(x)$ is TRUE.
- Same Idea but stated differently:
- You can PROVE $(\exists x)[P(x)]$ by showing just ONE x for which $P(x)$ is TRUE.
- In either case we need to show that some x with some property exists.

Constructive proofs in Number Theory

(and one non-constructive one)

Our first constructive proof

- Claim There exists a natural number that you cannot write as a sum of three squares of natural numbers.
- Examples of numbers you can write as a sum of three squares
- $0=0^{2}+0^{2}+0^{2}$
- $1=1^{2}+0^{2}+0^{2}$
- $2=1^{2}+1^{2}+0^{2}$
- Try to find a number that cannot be written as such.

Proof

- The natural number 7 cannot be written as the sum of three squares.
- This we can prove by case analysis

1. Can't use 3 , since $3^{2}=9>7$
2. Can't use 2 more than once, since $2^{2}+2^{2}=8>7$
3. So, we can use 2 , one or zero times.
a) If we use 2 once, we have $7=2^{2}+a^{2}+b^{2} \leq 2^{2}+1^{2}+1^{2}=6<7$
b) If we use 2 zero times, the maximum value is $1^{2}+1^{2}+1^{2}=3<7$
4. Done!

Let's Go Further!

- We showed that there exists x (namely 7) so that x cannot be written as the sum of 3 squares.
- This is the origin of 7 being a lucky number.

Let's Go Further!

- We showed that there exists x (namely 7) so that x cannot be written as the sum of 3 squares.
- This is the origin of 7 being a lucky number.
- That last sentence is not true. Emily no longer believes anything I say since
- I lied in Ramsey Theory every other day.
- (More like 4 times a day...)

Let's Go Further!

- We showed that there exists x (namely 7) so that x cannot be written as the sum of 3 squares.
- This is the origin of 7 being a lucky number.
- That last sentence is not true. Emily no longer believes anything I say since
- I lied in Ramsey Theory every other day.
- (More like 4 times a day...)
- But seriously, are there more numbers that cannot be written as the sum of three squares?
- This is not our original question, but its a good question, so we pursue it.

Sum of Three Squares

- In Breakout Rooms, Find
- Other numbers that are NOT the sum of 3 squares
- Try to prove there are an INFINITE number of numbers that are NOT the sum of 3 squares

Sum of Three Squares

n	n as a sum of squares	Number of squares ≤ 3
1	1^{2}	Y
2	$1^{2}+1^{2}$	Y
3	$1^{2}+1^{2}+1^{2}$	Y
4	2^{2}	Y
5	$2^{2}+1^{2}$	Y
6	$2^{2}+1^{2}+1^{2}$	Y
7	$2^{2}+1^{2}+1^{2}+1^{2}$	N
8	$2^{2}+2^{2}$	Y

Sum of Three Squares

n	n as a sum of squares	Number of squares ≤ 3
9	3^{2}	Y
10	$3^{2}+1^{2}$	Y
11	$3^{2}+1^{2}+1^{2}$	Y
12	$2^{2}+2^{2}+2^{2}$	Y
13	$3^{2}+2^{2}$	Y
14	$3^{2}+2^{2}+1^{2}$	Y
15	$3^{2}+2^{2}+1^{2}+1^{2}$	N
16	4^{2}	Y

Sum of Three Squares

n	n as a sum of squares	Number of squares ≤ 3
17	$4^{2}+1^{2}$	Y
18	$3^{2}+3^{2}$	Y
19	$3^{2}+3^{2}+1^{2}$	Y
20	$4^{2}+2^{2}$	Y
21	$4^{2}+2^{2}+1^{2}$	Y
22	$3^{2}+3^{2}+2^{2}$	Y
23	$3^{2}+3^{2}+2^{2}+1^{2}$	N
24	$4^{2}+2^{2}+2^{2}$	Y

Sum of Three Squares

- If $n \equiv 7(\bmod 8)$, then n CANNOT be written as the sum of 3 squares

Mod 8	
$0^{2} \equiv 0$	$4^{2} \equiv 0$
$1^{2} \equiv 1$	$5^{2} \equiv 1$
$2^{2} \equiv 4$	$6^{2} \equiv 4$
$3^{2} \equiv 1$	$7^{2} \equiv 1$

Sum of Three Squares

So, is there some way for three numbers from $0,1,4$ to add up to $7(\bmod 8)$?

Case 1 Use zero 4's. Then max is $1+1+1 \equiv 3<7$.
Case 2 Use exactly one 4 . Then we have to get 3 with two of $\{0,1\}$, but the \max is $1+1 \equiv 2<4$.

Case 3 Use two 4 's $4+4+0=1,4+4+1 \equiv 2$.

Case 4 Use three 4's 4+4+4 $\equiv 4$.

What do we know?

- Theorem: If $n \equiv 7(\bmod 8)$ then 7 cannot be written as the sum of 3 squares.

What do we know?

- Theorem: If $n \equiv 7(\bmod 8)$ then 7 cannot be written as the sum of 3 squares.
- Conjecture: The only numbers that cannot be written as the sum of 3 squares are those that are $\equiv 7(\bmod 8)$.

What do we know?

- Theorem: If $n \equiv 7(\bmod 8)$ then 7 cannot be written as the sum of 3 squares.
- Conjecture: The only numbers that cannot be written as the sum of 3 squares are those that are $\equiv 7(\bmod 8)$.
- Is this true? You may investigate it on a Homework.

Your turn, class!

- Let's break into breakout rooms and prove the following theorems

1. There exists an integer n that can be written in two ways as a sum of two prime numbers.
2. There is a perfect square that can be written as a sum of two other perfect squares.
3. Suppose $r, s \in \mathbb{Z}$. Then, $(\exists k \in \mathbb{Z})[22 r+18 s=2 k]$

Our first non-constructive proof

- Theorem There exists a pair of irrational numbers a and b such that a^{b} is a rational number.

Our first non-constructive proof

- For the following proof, we will assume known that $\sqrt{2} \notin \mathbb{Q}$.
- This is a fact, which we will prove later on in this section.
- Now, on to the proof!

Our first non-constructive proof

- Theorem There exists a pair of irrational numbers a and b such that a^{b} is a rational number.

Our first non-constructive proof

- Theorem There exists a pair of irrational numbers a and b such that a^{b} is a rational number.
- Proof Let $a=b=\sqrt{2}$. Since $\sqrt{2}$ is irrational, a and b are both irrational. Is $a^{b}=(\sqrt{2})^{\sqrt{2}}$ rational? Two cases

Our first non-constructive proof

- Theorem There exists a pair of irrational numbers a and b such that a^{b} is a rational number.
- Proof Let $a=b=\sqrt{2}$. Since $\sqrt{2}$ is irrational, a and b are both irrational. Is $a^{b}=(\sqrt{2})^{\sqrt{2}}$ rational? Two cases

1. If $\sqrt{2}^{\sqrt{2}}$ is rational, then we have proven the result. Done.

Our first non-constructive proof

- Theorem There exists a pair of irrational numbers a and b such that a^{b} is a rational number.
- Proof Let $a=b=\sqrt{2}$. Since $\sqrt{2}$ is irrational, a and b are both irrational. Is $a^{b}=(\sqrt{2})^{\sqrt{2}}$ rational? Two cases

1. If $\sqrt{2}^{\sqrt{2}}$ is rational, then we have proven the result. Done.
2. If $\sqrt{2}^{\sqrt{2}}$ is irrational, then we will name it c. Then, observe that $c^{\sqrt{2}}$ is rational, since $c^{\sqrt{2}}=\left((\sqrt{2})^{\sqrt{2}}\right)^{\sqrt{2}}=(\sqrt{2})^{2}=2 \in \mathbb{Q}$. Since both c and $\sqrt{2}$ are irrationals, but $c^{\sqrt{2}}$ is rational, we are done.

Analysis of proof

- Suppose $x=\sqrt{2}$, an irrational. From the previous theorem, we know
a) Either that $a=x, b=x$ are two irrationals that satisfy the condition, OR
b) That $a=x^{x}, b=x$ are the two irrationals.
- But we don't care which pair it is! As long as one exists!

STOP

