1. (20 points) Give a Propositional Formula on four variables that has exactly three satisfying assignments. Give the satisfying assignments.

SOLUTION TO PROBLEM ONE

We give a formula of the form $C_1 \lor C_2 \lor C_3$ so that the three assignments are those that make C_1 true, C_2 true, C_3 true, and make sure that no assignment satisfies two of those.

Vars are w, x, y, z

$$(w \land x \land y \land z) \lor (w \land x \land y \land \overline{z}) \lor (w \land x \land \overline{y} \land \overline{z})$$

EXERCISE FOR YOU: Do more of these. How many such formulas are there?

END OF SOLUTION TO PROBLEM ONE
2. (20 points) Use truth table so show that

\[(x \lor y) \land z\]

is not equivalent to

\[x \lor (y \land z)\].

INDICATE which rows they differ on.

SOLUTION TO PROBLEM TWO

Below is the truth table. Here is how I did it with some shortcuts.

Look at the first formula \((x \lor y) \land z\). If \(z = F\) then its false. So I filled in those four entries. For those entries left \(z = T\), so the formula is really \(x \lor y\). So thats \(T\) unless \(x = y = F\).

Look at the second formula \(x \lor (y \land z)\). If \(x\) is true then its true. So I filled in those four entries. For those entries left \(x = F\), so the formula is really \(y \land z\). So thats \(F\) unless \(y = z = T\).

We put a * on the evaluation when the formulas give different values.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>((x \lor y) \land z)</th>
<th>(x \lor (y \land z))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F^*)</td>
<td>(T^*)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F^*)</td>
<td>(T^*)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

END OF SOLUTION TO PROBLEM TWO
3. (30 points) \(n \) has the *emily property* if there is a formula on \(n \) variables with exactly \(n^2 + 100 \) satisfying assignments.

(a) (15 points) Fill in the BLANK in the following sentence

\[
\text{\(\begin{align*}
\text{n has the emily property IFF BLANK(n).} \\
\text{The condition BLANK has to be simple, for example, \(n \) is divisible by 5 (that's not the answer).}
\end{align*}
\) }
\]

(b) (15 points) Prove the statement you made in the first part. Note that this means you have to show that
If BLANK(\(n \)) then \(n \) has the emily property
and
If NOT(BLANK(\(n \))) then \(n \) DOES NOT have the emily property

SOLUTION TO PROBLEM THREE

(a) \(n \) has the emily property IFF BLANK(\(n \)).
So we need that there is a boolean formula with exactly \(n^2 + 100 \) satisfying assignments. Here is how you would construct such a formula: Make a Truth Table where the first \(n^2 + 100 \) rows are \(T \) and the rest are \(F \), and then make a formula from that truth table (as shown in class). SO you might thing you can do this for ALL \(n \). But you would be wrong. There are \(2^n \) rows in a truth table. So we need

\[
n^2 + 100 \leq 2^n
\]
So we need \(2^n - n^2 - 100 \geq 0 \).
There are two ways to do this:

METHOD ONE: Plug \(n = 1, 2, 3, \ldots \) until you get \(2^n - n^2 - 100 \geq 0 \). Then assume this is true for all larger \(n \) (this is not rigorous, but its true and we’re fine with it).
\(n = 1: 2^1 - 1^2 - 100 < 0 \) so NO
\(n = 2: 2^2 - 2^2 - 100 < 0 \) so NO
WAIT- we need to have \(2^n \geq 100 \). This might not suffice but we should start there. That's \(n = 7 \) since \(2^6 = 64 < 100 \) but \(2^7 = 128 > 100 \).
\(n = 7: \ 2^7 - 7^2 - 100 = 128 - 149 < 0. \)
\(n = 8: \ 2^8 - 8^2 - 100 = 256 - 164 > 0. \) YEAH.
So BLANK\((n)\) is \(n \geq 8. \)

METHOD TWO: Let \(f(x) = 2^x - x^2 - 100. \) We need to know when this is always positive. Let’s take the derivative and find max and min
\[
 f'(x) = (\ln 2)2^x - 2x.
\]
One can find that they are two roots, one close to 1 and one close to 3. Evaluating the function in the intervals before and between the roots, one can find out that being 4 the function is increasing.

Now look at the original \(f. \) Its positive for the first time (at an integer) at 8. Since the derivative is positive from 4 on, \(f \) is increasing and hence positive from 8 on.

BLANK\((n)\) is \(n \geq 8. \)

METHOD TWO is messier than METHOD ONE; however, METHOD TWO is more rigorous. If that does not impress you, you are not alone.

(b) I did the prove while doing the problem.

END OF SOLUTION TO PROBLEM THREE
4. (30 points) (NOTE: 0 and 1 are NOT prime. You will need that for this problem.)

(a) (15 points) View the input x, y, z as the number in binary xyz which we denote (xyz). For example, 100 is 4.
Write a Truth Table for the following function with 3 inputs x, y, z and 3 outputs a, b, c.

\[
f(x, y, z) = \begin{cases}
0 & \text{if } (xyz) \text{ is NOT PRIME.} \\
1 & \text{if } (xyz) \text{ is PRIME.}
\end{cases}
\]

(b) (15 points) Convert your truth table into formulas. DO NOT SIMPLIFY.

(c) (0 points- DO NOT HAND IN) Draw a circuit that computes that truth table.

SOLUTION TO PROBLEM FOUR

(a) Truth Table for IS IT A PRIME

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>prime?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) Formula. Look at the rows that evaluate to 1. For each one obtain a mini-fml. Then OR then together.

\[
(\neg a \land b \land \neg c) \lor (\neg a \land \neg b \land c) \lor (a \land \neg b \land c) \lor (a \land b \land c)
\]

END OF SOLUTION TO PROBLEM FOUR