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Setting



Dense in R

Def Let D ⊆ R. D is dense in R if

(∀x , y ∈ R)[x < y =⇒ (∃z ∈ D)[x < z < y ]].

Examples and Counterexamples

1. Q is dense in R. Just use a+b
2 .

2. I (the irrationals) is dense in R. Follows from the
untimedmid1 problem.

3. N and Z are not dense in R.
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More Domains

We will consider the following questions.

1. Is

{a+ b
√
2 : a, b ∈ Z}

dense in R?
Vote Yes, No, Unknown to Bill.

2. Is

{a+ bπ : a, b ∈ Z}

dense in R?
Vote Yes, No, Unknown to Bill.

Answer on next slide.
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3. More generally, if γ ∈ I then

{a+ bγ : a, b ∈ Z}

is dense in R



More Domains

1. Is

{a+ b
√
2 : a, b ∈ Z}

dense in R?

YES

2. Is

{a+ bπ : a, b ∈ Z}

dense in R? YES

3. More generally, if γ ∈ I then

{a+ bγ : a, b ∈ Z}

is dense in R



More Domains

1. Is

{a+ b
√
2 : a, b ∈ Z}

dense in R? YES

2. Is

{a+ bπ : a, b ∈ Z}

dense in R? YES

3. More generally, if γ ∈ I then

{a+ bγ : a, b ∈ Z}

is dense in R



More Domains

1. Is

{a+ b
√
2 : a, b ∈ Z}

dense in R? YES

2. Is

{a+ bπ : a, b ∈ Z}

dense in R?

YES

3. More generally, if γ ∈ I then

{a+ bγ : a, b ∈ Z}

is dense in R



More Domains

1. Is

{a+ b
√
2 : a, b ∈ Z}

dense in R? YES

2. Is

{a+ bπ : a, b ∈ Z}

dense in R? YES

3. More generally, if γ ∈ I then

{a+ bγ : a, b ∈ Z}

is dense in R



More Domains

1. Is

{a+ b
√
2 : a, b ∈ Z}

dense in R? YES

2. Is

{a+ bπ : a, b ∈ Z}

dense in R? YES

3. More generally, if γ ∈ I then

{a+ bγ : a, b ∈ Z}

is dense in R



Theorems About
D = {a + b

√
2}



We Prove. . . But . . .

We will prove the following:
Thm If r1, r2 ∈ R>0 and r1 < r2 then

(∃x , y ∈ Z)[r1 < x + y
√
2 < r2].

r1, r2 ∈ R>0 allows us to skip some unimportant details.

Using
√
2 instead of γ ∈ I lets us, as the kids say, keep it real.

Emily to Bill Keep it real is just so 1980’s.

Bill to Emily I’m being retro! And now, back to the math.

Can use the ideas on these slides to prove:

Thm Let γ ∈ I. If r1, r2 ∈ R and r1 < r2 then

(∃x , y ∈ Z)[r1 < x + yγ < r2].
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Numbers in D Can Be Small

Thm (∀n ∈ N)(∃x , y ∈ Z)
[
0 < x + y

√
2 < 1

n

]
.

Need definitions.

If x ∈ R>0 then H(x) is the part after the decimal point.
Example
H(π) = 0.14159 . . ..
H(

√
3) = 0.73205 . . ..

H(4) = 0.
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Numbers in D Can Be Small (cont)

Take the numbers between 0 and 1 and partition them into(
0, 1n

]
,
(
1
n ,

2
n

]
, . . .,

(
n−1
n , 1

]
Map the set {1, . . . , n} × {1, . . . , n} into those intervals.

Map (a, b) to the interval that H(a+ b
√
2) is in.

Example n = 4. We map {1, 2, 3, 4} × {1, 2, 3, 4} to(
0, 14

]
,
(
1
4 ,

2
4

]
,
(
2
4 ,

3
4

]
,
(
3
4 , 1

]
.

(0, 0.25], (0.25, 0.5], (0.5, 0.75], (0.75, 1].

We show where a few of the ordered pairs go.

(4, 1): 4 + 1×
√
2 = 5.414. H(4.414) = 0.414 → (0.25, 0.5].

(3, 2): 3 + 2×
√
2 = 5.828. H(0.828) = 0.171 → (0.75, 1].

(2, 3): 2 + 3×
√
2 = 6.242. H(6.242) = 0.242 → (0, 0.25].

(1, 4): 1 + 4×
√
2 = 6.656. H(6.656) = 0.656. → (0.5, 0.75].
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2) is in.
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Numbers in D Can Be Small (cont)

In the last slide we described a function from
{1, . . . , n} × {1, . . . , n} to a set of n intervals.

The domain has n2 ordered pairs.

The co-domain has n intervals.

Since n < n2, by the Pigeonhole Principle there exists 2 ordered
pairs that map to the same interval.
(Actually there exists more but we do not need that.)

Let (a, b) and (c, d) be two different ordered pairs that map to the
same interval.
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Numbers in D Can Be Small (cont)

(a, b) and (c , d) map to the same interval.

So H(a+ b
√
2) and H(c + d

√
2) are within 1

n of each other.
There exists e, f ∈ N such that
H(a+ b

√
2) = a+ b

√
2− e

H(c + d
√
2) = c + d

√
2− f

We can assume a+ b
√
2− e < c + d

√
2− f .

SO

1. (c + d
√
2− f )− (a+ b

√
2− e) < 1

n since in same interval.

2. (c + d
√
2− f )− (a+ b

√
2− e) > 0 since if not then

√
2 ∈ Q.

So
0 < (c + d

√
2− f )− (a+ b

√
2− e) < 1

n

0 < (c + e − f − a) + (b − d)
√
2 < 1

n
So
(x , y) = (c + e − f − a, b − d) ∈ Z× Z works.



Numbers in D Can Be Small (cont)

(a, b) and (c , d) map to the same interval.

So H(a+ b
√
2) and H(c + d

√
2) are within 1

n of each other.

There exists e, f ∈ N such that
H(a+ b

√
2) = a+ b

√
2− e

H(c + d
√
2) = c + d

√
2− f

We can assume a+ b
√
2− e < c + d

√
2− f .

SO

1. (c + d
√
2− f )− (a+ b

√
2− e) < 1

n since in same interval.

2. (c + d
√
2− f )− (a+ b

√
2− e) > 0 since if not then

√
2 ∈ Q.

So
0 < (c + d

√
2− f )− (a+ b

√
2− e) < 1

n

0 < (c + e − f − a) + (b − d)
√
2 < 1

n
So
(x , y) = (c + e − f − a, b − d) ∈ Z× Z works.



Numbers in D Can Be Small (cont)

(a, b) and (c , d) map to the same interval.

So H(a+ b
√
2) and H(c + d

√
2) are within 1

n of each other.
There exists e, f ∈ N such that

H(a+ b
√
2) = a+ b

√
2− e

H(c + d
√
2) = c + d

√
2− f

We can assume a+ b
√
2− e < c + d

√
2− f .

SO

1. (c + d
√
2− f )− (a+ b

√
2− e) < 1

n since in same interval.

2. (c + d
√
2− f )− (a+ b

√
2− e) > 0 since if not then

√
2 ∈ Q.

So
0 < (c + d

√
2− f )− (a+ b

√
2− e) < 1

n

0 < (c + e − f − a) + (b − d)
√
2 < 1

n
So
(x , y) = (c + e − f − a, b − d) ∈ Z× Z works.



Numbers in D Can Be Small (cont)

(a, b) and (c , d) map to the same interval.

So H(a+ b
√
2) and H(c + d

√
2) are within 1

n of each other.
There exists e, f ∈ N such that
H(a+ b

√
2) = a+ b

√
2− e

H(c + d
√
2) = c + d

√
2− f

We can assume a+ b
√
2− e < c + d

√
2− f .

SO

1. (c + d
√
2− f )− (a+ b

√
2− e) < 1

n since in same interval.

2. (c + d
√
2− f )− (a+ b

√
2− e) > 0 since if not then

√
2 ∈ Q.

So
0 < (c + d

√
2− f )− (a+ b

√
2− e) < 1

n

0 < (c + e − f − a) + (b − d)
√
2 < 1

n
So
(x , y) = (c + e − f − a, b − d) ∈ Z× Z works.



Numbers in D Can Be Small (cont)

(a, b) and (c , d) map to the same interval.

So H(a+ b
√
2) and H(c + d

√
2) are within 1

n of each other.
There exists e, f ∈ N such that
H(a+ b

√
2) = a+ b

√
2− e

H(c + d
√
2) = c + d

√
2− f

We can assume a+ b
√
2− e < c + d

√
2− f .

SO

1. (c + d
√
2− f )− (a+ b

√
2− e) < 1

n since in same interval.

2. (c + d
√
2− f )− (a+ b

√
2− e) > 0 since if not then

√
2 ∈ Q.

So
0 < (c + d

√
2− f )− (a+ b

√
2− e) < 1

n

0 < (c + e − f − a) + (b − d)
√
2 < 1

n
So
(x , y) = (c + e − f − a, b − d) ∈ Z× Z works.



Numbers in D Can Be Small (cont)

(a, b) and (c , d) map to the same interval.

So H(a+ b
√
2) and H(c + d

√
2) are within 1

n of each other.
There exists e, f ∈ N such that
H(a+ b

√
2) = a+ b

√
2− e

H(c + d
√
2) = c + d

√
2− f

We can assume a+ b
√
2− e < c + d

√
2− f .

SO

1. (c + d
√
2− f )− (a+ b

√
2− e) < 1

n since in same interval.

2. (c + d
√
2− f )− (a+ b

√
2− e) > 0 since if not then

√
2 ∈ Q.

So
0 < (c + d

√
2− f )− (a+ b

√
2− e) < 1

n

0 < (c + e − f − a) + (b − d)
√
2 < 1

n
So
(x , y) = (c + e − f − a, b − d) ∈ Z× Z works.



Numbers in D Can Be Small (cont)

(a, b) and (c , d) map to the same interval.

So H(a+ b
√
2) and H(c + d

√
2) are within 1

n of each other.
There exists e, f ∈ N such that
H(a+ b

√
2) = a+ b

√
2− e

H(c + d
√
2) = c + d

√
2− f

We can assume a+ b
√
2− e < c + d

√
2− f .

SO

1. (c + d
√
2− f )− (a+ b

√
2− e) < 1

n since in same interval.

2. (c + d
√
2− f )− (a+ b

√
2− e) > 0 since if not then

√
2 ∈ Q.

So
0 < (c + d

√
2− f )− (a+ b

√
2− e) < 1

n

0 < (c + e − f − a) + (b − d)
√
2 < 1

n
So
(x , y) = (c + e − f − a, b − d) ∈ Z× Z works.



Numbers in D Can Be Small (cont)

(a, b) and (c , d) map to the same interval.

So H(a+ b
√
2) and H(c + d

√
2) are within 1

n of each other.
There exists e, f ∈ N such that
H(a+ b

√
2) = a+ b

√
2− e

H(c + d
√
2) = c + d

√
2− f

We can assume a+ b
√
2− e < c + d

√
2− f .

SO

1. (c + d
√
2− f )− (a+ b

√
2− e) < 1

n since in same interval.

2. (c + d
√
2− f )− (a+ b

√
2− e) > 0 since if not then

√
2 ∈ Q.

So
0 < (c + d

√
2− f )− (a+ b

√
2− e) < 1

n

0 < (c + e − f − a) + (b − d)
√
2 < 1

n
So
(x , y) = (c + e − f − a, b − d) ∈ Z× Z works.



Numbers in D Can Be Small (cont)

(a, b) and (c , d) map to the same interval.

So H(a+ b
√
2) and H(c + d

√
2) are within 1

n of each other.
There exists e, f ∈ N such that
H(a+ b

√
2) = a+ b

√
2− e

H(c + d
√
2) = c + d

√
2− f

We can assume a+ b
√
2− e < c + d

√
2− f .

SO

1. (c + d
√
2− f )− (a+ b

√
2− e) < 1

n since in same interval.

2. (c + d
√
2− f )− (a+ b

√
2− e) > 0 since if not then

√
2 ∈ Q.

So
0 < (c + d

√
2− f )− (a+ b

√
2− e) < 1

n

0 < (c + e − f − a) + (b − d)
√
2 < 1

n
So
(x , y) = (c + e − f − a, b − d) ∈ Z× Z works.



Numbers in D Can Be Small (cont)

(a, b) and (c , d) map to the same interval.

So H(a+ b
√
2) and H(c + d

√
2) are within 1

n of each other.
There exists e, f ∈ N such that
H(a+ b

√
2) = a+ b

√
2− e

H(c + d
√
2) = c + d

√
2− f

We can assume a+ b
√
2− e < c + d

√
2− f .

SO

1. (c + d
√
2− f )− (a+ b

√
2− e) < 1

n since in same interval.

2. (c + d
√
2− f )− (a+ b

√
2− e) > 0 since if not then

√
2 ∈ Q.

So
0 < (c + d

√
2− f )− (a+ b

√
2− e) < 1

n

0 < (c + e − f − a) + (b − d)
√
2 < 1

n

So
(x , y) = (c + e − f − a, b − d) ∈ Z× Z works.



Numbers in D Can Be Small (cont)

(a, b) and (c , d) map to the same interval.

So H(a+ b
√
2) and H(c + d

√
2) are within 1

n of each other.
There exists e, f ∈ N such that
H(a+ b

√
2) = a+ b

√
2− e

H(c + d
√
2) = c + d

√
2− f

We can assume a+ b
√
2− e < c + d

√
2− f .

SO

1. (c + d
√
2− f )− (a+ b

√
2− e) < 1

n since in same interval.

2. (c + d
√
2− f )− (a+ b

√
2− e) > 0 since if not then

√
2 ∈ Q.

So
0 < (c + d

√
2− f )− (a+ b

√
2− e) < 1

n

0 < (c + e − f − a) + (b − d)
√
2 < 1

n
So
(x , y) = (c + e − f − a, b − d) ∈ Z× Z works.



D is Dense in R>0

Thm If r1, r2 ∈ R>0 and r1 < r2 then

(∃a, b ∈ Z)[r1 < a+ b
√
2 < r2].

Proof
Let n be such 1

n < min{r2 − r1, r1}.
Let x , y ∈ Z such that 0 < x + y

√
2 < 1

n < min{r2 − r1, r1}.
Continued on next page.
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D is Dense in R>0 (cont)

Want a, b ∈ Z such that r1 < a+ b
√
2 < r2.

Have x , y ∈ Z such that 0 < x + y
√
2 < min{r2 − r1r1}.

[ | ( )

0 x + y
√
2 r1 r2

Consider 2x + 2y
√
2, 3x + 3y

√
2, · · ·

Until you get to an m such that

mx +my
√
2 < r1 < (m + 1)x + (m + 1)y

√
2

Since x + y
√
2 < r2 − r1 we will have

r1 < (m + 1)x + (m + 1)y
√
2 < r2

(a, b) = ((m + 1)x , (m + 1)y) works.
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(a, b) = ((m + 1)x , (m + 1)y) works.



Where Did This Come
From?



The Origin of the Question

I though of the question

is {a+ b
√
2 : a,b ∈ Z} dense?

after the untimed midterm question on density. However, people in
math tell me its well known though cannot provide a reference.

What about the proof?

All of the ideas for the proof were known but in a different context.
It comes from Dirichlets’ Theorem on Approximationg
Irrationals.
We won’t be doing that.
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Approximating γ ∈ I with Rationals

In the early 1800’s Dirichlet proved the following:

Thm Let γ ∈ I. (∀n ∈ N)(∃m ∈ Z)[|γ − m
n | <

1
n2
].

He used the pigeonhole principle.

Actually. . . It was an early use of the Pigeonhole Principle.

On Jeopardy: I’ll take Historical Math Names for $2000
Answer An early name for The Pigeonhole Principle
Question What is Dirichlet’s Box Principle?

We prove Dirichlet’s Theorem on approximations of irrationals by
rationals. You are already familiar with most of the ideas.
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Approximating γ ∈ I with Rationals

Thm Let γ ∈ I. (∀n ∈ N)(∃m ∈ Z)
[
|γ − m

n | <
1
n2

]
.

Take the numbers between 0 and 1 and partition them into(
0, 1

n2

]
,
(

1
n2
, 2
n2

]
, . . .,

(
n2−1
n2

, 1
]

Map the set {1, . . . , n + 1} × {1, . . . , n + 1} into those intervals.

Map (a, b) to the interval that H(a+ bγ) is in.
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Approximating γ ∈ I with Rationals

In the last slide we described a function from
{1, . . . , n + 1} × {1, . . . , n + 1} to a set of n2 intervals.

The domain has (n + 1)2 ordered pairs.

The co-domain has n2 intervals.

Since n2 < (n + 1)2, by the Pigeonhole Principle there exists 2
ordered pairs that map to the same interval.

Let (a, b) and (c, d) be two different ordered pairs that map to the
same interval.
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Approximating γ ∈ I with Rationals

(a, b) and (c , d) map to the same interval.

So H(a+ bγ) and H(c + dγ) are within 1
n2

of each other.
There exists e, f ∈ N such that
H(a+ bγ) = a+ bγ − e
H(c + dγ) = c + dγ − f
We can assume b − d < 0.
SO

1. |(c + dγ − f )− (a+ bγ − e)| < 1
n2

since in same interval.

2. |(c + dγ − f )− (a+ bγ − e)| > 0 since if not then γ ∈ Q.

So
0 < |(c + dγ − f )− (a+ bγ − e)| < 1

n2

0 < |(c + a− f − a) + (b − d)γ| < 1
n2

0 < |(c + a− f − a)− (d − b)γ| < 1
n2

So
0 < | c+a−f−a

d−b − γ| < 1
n2(d−b)

< 1
n2
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Can the Approximation Theorem Be Improved?

Dirichlet Proved:
Thm Let γ ∈ I. (∀n ∈ N)(∃m ∈ Z)

[
|γ − m

n | <
1
n2

]
.

Better is known.
Hurwitz proved the following in the late 1800’s.

1. Let γ ∈ I.

(∀n ∈ N)(∃m ∈ Z)
[
|γ − m

n
| < 1√

5n2

]
.

The proof is beyond the scope of this course.

2. There exists γ ∈ I such that, the above is the best possible.

3.
√
5+1
2 is one of those γ.
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Questions Left

1. Is the proof that {a+ b
√
2 : a, b ∈ Z} is dense easy enough to

do in the ordinary CMSC 250?

2. Is there an easier proof that {a+ b
√
2 : a, b ∈ Z} is dense?

Perhaps one that uses properties of
√
2.

3. Is there an easier proof of Hurwitz Theorem?

4. Has anyone ever wrote this down before?
This is not an ego-question.
It’s part of the more general question of why some people get
ideas that others do not.
Emily says its because I look at things more pedagogically.
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