3-Colorings of $4 \times x$ that Avoid Rectangles

May 1, 2024

Goal: Find an x such that ...

Goal Find an x such that

Goal: Find an x such that ...

Goal Find an x such that

For all 3-colorings of $4 \times x$ there exists a mono rectangle.

Goal: Find an x such that ...

Goal Find an x such that

For all 3-colorings of $4 \times x$ there exists a mono rectangle.
Try to make x small

Goal: Find an x such that ...

Goal Find an x such that

For all 3-colorings of $4 \times x$ there exists a mono rectangle.
Try to make x small
Bonus if $4 \times(x-1)$ is 3 -colorable.

First Answer

This is modeled after our proof that 3×9 is not 2 -colorable..

First Answer

This is modeled after our proof that 3×9 is not 2 -colorable..

Given a 3 -coloring of $4 \times x$ look at each column.

First Answer

This is modeled after our proof that 3×9 is not 2 -colorable..

Given a 3-coloring of $4 \times x$ look at each column.
Column is RRRR or \cdots or GGGG.

First Answer

This is modeled after our proof that 3×9 is not 2 -colorable..

Given a 3 -coloring of $4 \times x$ look at each column.
Column is RRRR or \cdots or GGGG.Possibilities: $3 \times 3 \times 3 \times 3=81$.

First Answer

This is modeled after our proof that 3×9 is not 2 -colorable..

Given a 3 -coloring of $4 \times x$ look at each column.
Column is RRRR or \cdots or GGGG.Possibilities: $3 \times 3 \times 3 \times 3=81$.
Key: A 3-coloring of $4 \times x$ is an 81-coloring of the x columns.

First Answer

This is modeled after our proof that 3×9 is not 2 -colorable..

Given a 3 -coloring of $4 \times x$ look at each column.
Column is RRRR or \cdots or GGGG.Possibilities: $3 \times 3 \times 3 \times 3=81$.
Key: A 3-coloring of $4 \times x$ is an 81-coloring of the x columns.
If $x=82$ then some column-color appears twice.

First Answer

This is modeled after our proof that 3×9 is not 2 -colorable..

Given a 3 -coloring of $4 \times x$ look at each column.
Column is RRRR or \cdots or GGGG.Possibilities: $3 \times 3 \times 3 \times 3=81$.
Key: A 3-coloring of $4 \times x$ is an 81-coloring of the x columns.
If $x=82$ then some column-color appears twice. Example:

	\mathbf{R}				\mathbf{R}	
	\mathbf{B}				\mathbf{B}	
	\mathbf{R}				\mathbf{R}	
	\mathbf{G}				\mathbf{G}	

First Answer

This is modeled after our proof that 3×9 is not 2 -colorable..

Given a 3 -coloring of $4 \times x$ look at each column.
Column is RRRR or \cdots or GGGG.Possibilities: $3 \times 3 \times 3 \times 3=81$.
Key: A 3-coloring of $4 \times x$ is an 81-coloring of the x columns.
If $x=82$ then some column-color appears twice. Example:

	\mathbf{R}				\mathbf{R}	
	\mathbf{B}				\mathbf{B}	
	\mathbf{R}				\mathbf{R}	
	\mathbf{G}				\mathbf{G}	

Can show that the 2 repeat-columns imply a mono rectangle.

Can we do Better than 82?. Yes!

Key Having two columns the same color is more than we need.

Can we do Better than 82?. Yes!

Key Having two columns the same color is more than we need.
All we need is that two columns have the same color in the same two spots.

Can we do Better than 82?. Yes!

Key Having two columns the same color is more than we need.
All we need is that two columns have the same color in the same two spots.

New Approach $4 \times x$ is 3 -colored.

Can we do Better than 82?. Yes!

Key Having two columns the same color is more than we need.
All we need is that two columns have the same color in the same two spots.

New Approach $4 \times x$ is 3 -colored.
Every column has two of the same color (perhaps more).

Can we do Better than 82?. Yes!

Key Having two columns the same color is more than we need.
All we need is that two columns have the same color in the same two spots.

New Approach $4 \times x$ is 3 -colored.
Every column has two of the same color (perhaps more).
Map every column to one of the colors that appears twice and the pair of spots its at.

Can we do Better than 82?. Yes!

Key Having two columns the same color is more than we need.
All we need is that two columns have the same color in the same two spots.

New Approach $4 \times x$ is 3 -colored.
Every column has two of the same color (perhaps more).
Map every column to one of the colors that appears twice and the pair of spots its at.
Example on next page.

Example of the Map

R	R	G	B	B	B
R	B	G	G	B	R
B	G	G	B	G	R
B	R	G	B	R	G

1st column could map to either $R \times\{1,2\}$ or $B \times\{3,4\}$.

Example of the Map

\mathbf{R}	\mathbf{R}	\mathbf{G}	\mathbf{B}	\mathbf{B}	\mathbf{B}
\mathbf{R}	\mathbf{B}	\mathbf{G}	\mathbf{G}	\mathbf{B}	\mathbf{R}
\mathbf{B}	\mathbf{G}	\mathbf{G}	\mathbf{B}	\mathbf{G}	\mathbf{R}
\mathbf{B}	\mathbf{R}	\mathbf{G}	\mathbf{B}	\mathbf{R}	\mathbf{G}

1st column could map to either $R \times\{1,2\}$ or $B \times\{3,4\}$. We take the pair of numbers with the smallest first elt, so $R \times\{1,2\}$.

Example of the Map

\mathbf{R}	\mathbf{R}	\mathbf{G}	\mathbf{B}	\mathbf{B}	\mathbf{B}
\mathbf{R}	\mathbf{B}	\mathbf{G}	\mathbf{G}	\mathbf{B}	\mathbf{R}
\mathbf{B}	\mathbf{G}	\mathbf{G}	\mathbf{B}	\mathbf{G}	\mathbf{R}
\mathbf{B}	\mathbf{R}	\mathbf{G}	\mathbf{B}	\mathbf{R}	\mathbf{G}

1st column could map to either $R \times\{1,2\}$ or $B \times\{3,4\}$.
We take the pair of numbers with the smallest first elt, so
$R \times\{1,2\}$.
2nd col maps to $R \times\{1,4\}$.

Example of the Map

\mathbf{R}	\mathbf{R}	\mathbf{G}	\mathbf{B}	\mathbf{B}	\mathbf{B}
\mathbf{R}	\mathbf{B}	\mathbf{G}	\mathbf{G}	\mathbf{B}	\mathbf{R}
\mathbf{B}	\mathbf{G}	\mathbf{G}	\mathbf{B}	\mathbf{G}	\mathbf{R}
\mathbf{B}	\mathbf{R}	\mathbf{G}	\mathbf{B}	\mathbf{R}	\mathbf{G}

1st column could map to either $R \times\{1,2\}$ or $B \times\{3,4\}$.
We take the pair of numbers with the smallest first elt, so
$R \times\{1,2\}$.
2nd col maps to $R \times\{1,4\}$.
3rd col maps to $G \times\{1,2\}$.

Example of the Map

\mathbf{R}	\mathbf{R}	\mathbf{G}	\mathbf{B}	\mathbf{B}	\mathbf{B}
\mathbf{R}	\mathbf{B}	\mathbf{G}	\mathbf{G}	\mathbf{B}	\mathbf{R}
\mathbf{B}	\mathbf{G}	\mathbf{G}	\mathbf{B}	\mathbf{G}	\mathbf{R}
\mathbf{B}	\mathbf{R}	\mathbf{G}	\mathbf{B}	\mathbf{R}	\mathbf{G}

1st column could map to either $R \times\{1,2\}$ or $B \times\{3,4\}$.
We take the pair of numbers with the smallest first elt, so
$R \times\{1,2\}$.
2nd col maps to $R \times\{1,4\}$.
3rd col maps to $G \times\{1,2\}$.
4th col maps to $B \times\{1,3\}$.

Example of the Map

\mathbf{R}	\mathbf{R}	\mathbf{G}	\mathbf{B}	\mathbf{B}	\mathbf{B}
\mathbf{R}	\mathbf{B}	\mathbf{G}	\mathbf{G}	\mathbf{B}	\mathbf{R}
\mathbf{B}	\mathbf{G}	\mathbf{G}	\mathbf{B}	\mathbf{G}	\mathbf{R}
\mathbf{B}	\mathbf{R}	\mathbf{G}	\mathbf{B}	\mathbf{R}	\mathbf{G}

1st column could map to either $R \times\{1,2\}$ or $B \times\{3,4\}$.
We take the pair of numbers with the smallest first elt, so
$R \times\{1,2\}$.
2nd col maps to $R \times\{1,4\}$.
3rd col maps to $G \times\{1,2\}$.
4th col maps to $B \times\{1,3\}$.
5th col maps to $B \times\{1,2\}$.

Example of the Map

\mathbf{R}	\mathbf{R}	\mathbf{G}	\mathbf{B}	\mathbf{B}	\mathbf{B}
\mathbf{R}	\mathbf{B}	\mathbf{G}	\mathbf{G}	\mathbf{B}	\mathbf{R}
\mathbf{B}	\mathbf{G}	\mathbf{G}	\mathbf{B}	\mathbf{G}	\mathbf{R}
\mathbf{B}	\mathbf{R}	\mathbf{G}	\mathbf{B}	\mathbf{R}	\mathbf{G}

1st column could map to either $R \times\{1,2\}$ or $B \times\{3,4\}$.
We take the pair of numbers with the smallest first elt, so
$R \times\{1,2\}$.
2nd col maps to $R \times\{1,4\}$.
3rd col maps to $G \times\{1,2\}$.
4th col maps to $B \times\{1,3\}$.
5th col maps to $B \times\{1,2\}$.
6th col maps to $R \times\{2,3\}$.

How Many Elements in the Range of the Map

We are mapping every column to a pair:

How Many Elements in the Range of the Map

We are mapping every column to a pair:

- A color. There are 3 of those.

How Many Elements in the Range of the Map

We are mapping every column to a pair:

- A color. There are 3 of those.
- An unordered pair from $\{1,2,3,4\}$. $\binom{4}{2}=6$ of those.

How Many Elements in the Range of the Map

We are mapping every column to a pair:

- A color. There are 3 of those.
- An unordered pair from $\{1,2,3,4\}$. $\binom{4}{2}=6$ of those.
- Hence there are $3 \times 6=18$ in the range.

How Many Elements in the Range of the Map

We are mapping every column to a pair:

- A color. There are 3 of those.
- An unordered pair from $\{1,2,3,4\}$. $\binom{4}{2}=6$ of those.
- Hence there are $3 \times 6=18$ in the range.
- We can take $x=19$ to guarantee two columns map to the same color and spots.

Is $x=19$ optimal?

Every 3 -coloring of 4×19 has a mono rectangle.

Is $x=19$ optimal?

Every 3-coloring of 4×19 has a mono rectangle. Is there a 3-coloring of 4×19 ?

Is $x=19$ optimal?

Every 3-coloring of 4×19 has a mono rectangle. Is there a 3-coloring of 4×19 ?
Yes. On next slide.

3-coloring of 4×18

R	R	R	B	B	B
R	B	B	R	R	G
B	R	G	R	G	R
G	G	R	G	R	R

3-coloring of 4×18

R	R	R	B	B	B
R	B	B	R	R	G
B	R	G	R	G	R
G	G	R	G	R	R

This is a coloring of 4×6.

3-coloring of 4×18

R	R	R	B	B	B
R	B	B	R	R	G
B	R	G	R	G	R
G	G	R	G	R	R

This is a coloring of 4×6.
Rotate \mathbf{R} to \mathbf{B}, \mathbf{B} to \mathbf{G} and \mathbf{G} to \mathbf{R} and that gives 6 more column. Coloring of 4×6 where every column has 2 B's, 1 R, 1 G.

3-coloring of 4×18

R	R	R	B	B	B
R	B	B	R	R	G
B	R	G	R	G	R
G	G	R	G	R	R

This is a coloring of 4×6.
Rotate \mathbf{R} to \mathbf{B}, \mathbf{B} to \mathbf{G} and \mathbf{G} to \mathbf{R} and that gives 6 more column. Coloring of 4×6 where every column has 2 B 's, $1 \mathrm{R}, 1 \mathrm{G}$.
Rotate \mathbf{R} to \mathbf{B}, \mathbf{B} to \mathbf{G} and \mathbf{G} to \mathbf{R} and that gives 6 more column. Coloring of 4×6 where every column has 2 G 's, $1 \mathrm{~B}, 1 \mathbf{R}$.

3-coloring of 4×18

R	R	R	B	B	B
R	B	B	R	R	G
B	R	G	R	G	R
G	G	R	G	R	R

This is a coloring of 4×6.
Rotate \mathbf{R} to \mathbf{B}, \mathbf{B} to \mathbf{G} and \mathbf{G} to \mathbf{R} and that gives 6 more column. Coloring of 4×6 where every column has 2 B 's, $1 \mathrm{R}, 1 \mathrm{G}$.
Rotate \mathbf{R} to \mathbf{B}, \mathbf{B} to \mathbf{G} and \mathbf{G} to \mathbf{R} and that gives 6 more column. Coloring of 4×6 where every column has 2 G 's, $1 \mathrm{~B}, 1 \mathbf{R}$.
Put these colorings side by side to get 3-coloring of 4×18.

