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Recursive Definitions for Functions

● Sometimes it is hard to define an object explicitly, but we can define it in terms 
of itself

● Fibonacci: {1, 1, 2, 3, 5, 8, 13, ...}
○ Recursive Definition: 

Fn= Fn-1 + Fn-2

○ Closed form: 



Fibonacci 
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Recursively Defined Functions

Define a function with the set of nonnegative integers as its domain:

● Base Step: Specify the value of the function at zero
● Recursive Step: Give a rule for finding its value at an integer from its values at 

smaller integers



Give a recursive definition of an, where a is a nonzero real 
number and n is a nonnegative integer.

There are two parts: the base step and the recursive step

For n = {0, 1, 2, 3, ...}

● Base step: a0 = 1
● Recursive step: an+1 = a(an)



Recursive Definitions for Functions

● We can define a function with the set of nonnegative integers as its domain.
○ Basis Step: Specify the value of the function at zero
○ Recursive Step: Give a rule for finding its value at an integer from its 

values at smaller integers
● Recursively defined functions are well defined
●  Given any positive integer, 

○ We can use the two parts of the definition to find the value of the function 
at that integer

○ We obtain the same value no matter how we apply the two parts of the 
definition



Example

● f is defined recursively by 
○ f(0) = 3
○ f(n+1) = 2f(n) +3

● f (1) = 2f (0) + 3 = 2 · 3 + 3 = 9
● f (2) = 2f (1) + 3 = 2 · 9 + 3 = 21
● f (3) = 2f (2) + 3 = 2 · 21 + 3 = 45
● f (4) = 2f (3) + 3 = 2 · 45 + 3 = 93



Recursive Definitions for Sets and Structures

● Sets can also be defined recursively
● We still use the basis step and the recursive step

○ Basis Step: initial collection of elements is specified
○ Recursive Step: rules for forming new elements in the set from those 

already known to be in the set are provided
○ (Optional) Exclusion Rule: Specifies that a recursively defined set contains 

nothing other than those elements specified in the basis step or 
generated by applications of the recursive step



Example

Consider the subset S of the set of integers recursively defined by 

● Basis Step: 3 ∈ S
● Recursive Step: If x ∈ S and y ∈ S, then x + y ∈ S

Elements in S

● 3
● 3+3 = 6
● 3+6 = 9
● 6+6 = 12
● ect



Set of Strings

The set Σ∗ of strings over the alphabet Σ is defined recursively by 

Basis Step: ε ∈ Σ∗ (where ε is the empty string containing no symbols) 

Recursive Step: If w ∈ Σ∗ and x ∈ Σ , then wx ∈ Σ∗

● The basis step of the recursive definition of strings says that the empty string 
belongs to Σ∗

● The recursive step states that new strings are produced by adding a symbol 
from to the end of strings in Σ∗

● At each application of the recursive step, strings containing one additional 
symbol are generated



Concatenation of Strings

● Two strings can be combined via the operation of concatenation. 
● Let Σ be a set of symbols and Σ∗ the set of strings formed from symbols in Σ. 

We can define the concatenation of two strings, denoted by ·, recursively as 
follows. 

● Basis Step: If w ∈ Σ∗, then w · ε = w, where ε is the empty string 
● Recursive Step: If w1 ∈ Σ∗ and w2 ∈ Σ∗ and x ∈  Σ, then w1 · (w2x) = (w1 · w2)x. 



Examples

● If Σ = {0, 1}, the strings found to be in Σ∗, the set of all bit strings
○ ε from the  basis step
○ 0 and 1 from applying the recursive step once
○ 00, 01, 10, and 11 formed from applying the recursive step twice

● Concatenate w1 = abra and w2 = cadabra
○  w1w2 = abracadabra



Trees

● The set of rooted trees, where a rooted tree consists of a set of vertices 
containing a distinguished vertex called the root, and edges connecting these 
vertices, can be defined recursively by these steps: 
○ Basis Step: A single vertex r is a rooted tree
○ Recursive step: Suppose that T1, T2,...,Tn are disjoint rooted trees with roots 

r1, r2,...,rn, respectively. Then the graph formed by starting with a root r, 
which is not in any of the rooted trees T1, T2,...,Tn, and adding an edge from 
r to each of the vertices r1, r2,...,rn, is also a rooted tree.



Trees



Binary Trees

● Binary trees are a special type of rooted trees
● The set of binary trees can be defined recursively by 

○ BASIS STEP: There is a full binary tree consisting only of a single vertex r 
RECURSIVE STEP: If T1 and T2 are disjoint binary trees, there is a binary 
tree, denoted by T1 · T2, consisting of a root r together with edges 
connecting the root to each of the roots of the left subtree T1 and the right 
subtree T2



Trees



Structural Induction

● To prove results about recursively defined sets, we use what is called Structural 
Induction

● Structural induction can be used to prove that all members of a set constructed 
recursively have a particular property

● There are three parts of structural Induction
○ Basis Case: Show that the result holds for all elements specified in the basis step of 

the recursive definition to be in the set
○ Inductive Hypothesis: Assume the statement is true for some elements in S. 
○ Inductive Step: Show that if the statement is true for each of the elements used to 

construct new elements in the recursive step of the definition, the result holds for 
these new elements



Structural Induction Proofs: Example 1

● Define S as 
○ 3 ∈ S
○ If x ∈ S and y ∈ S, then x + y ∈ S

● Prove that (∀x ∈ S) x ≡ 0 mod 3

Proof by Structural Induction: 

Base Case: Our base case is 3 ∈ S.  Since 3 ≡ 0 mod 3, our base case holds.

Inductive Hypothesis: Assume for some elements x,y ∈ S that x ≡ 0 mod 3 and y ≡ 0 
mod 3.

Inductive Step: Consider x,y ∈ S. By our IH, x ≡ 0 mod 3 and y ≡ 0 mod 3. So, x + y ≡ 0 + 
0 ≡ 0 mod 3. Therefore, all elements in S are congruent to 0 mod 3.



Structural Induction Proofs: Example 2

● Define a formal language L as 
○ xyx ∊ L
○ If a string σ is in L, then xσyσx is in L
○ If a string σ is in L, then yxσxy is in L

Prove that all strings L have an even number of x’s in them.

Proof by Structural Induction: 

Base Case: Our base case is xyx. Since xyx, has 2 x’s and 2 is even, our base case holds. 

Inductive Hypothesis: Assume for some elements σ ∈ L that σ has an even number of 
x’s.



Structural Induction Proofs: Example 2

Inductive Hypothesis: Assume for some elements σ ∈ L that σ has an even number of 
x’s.

Inductive Step: Consider σ ∈ L. By our IH, σ has 2k number of x’s where k ∊ Z. Consider 
the cases of elements generated by σ.

Case 1: xσyσx has 2 copies of σ and 2 additional x’s. So in total we have 2k + 2k + 2 
= 4k + 2 = 2(2k+1) x’s. Since 2k+1 ∊ Z, we have an even number of x’s

Case 2: yxσxy has 1 σ and 2 additional x’s. So in total we have 2k + 2 = 2(k+1) x’s. 
Since k+1 ∊ Z, we have an even number of x’s.

Therefore, all elements in L have an even number of x’s in them. 



Structural Induction Proofs: Example 3

Define the set T which is a set containing functions as:

● sin(x) ∈ T (This means T contains the sine function as an element)
● If a function is in T, then f’ is in T. f’ is the derivative of f.

Prove that T  = {sin(x), cos(x), -sin(x), -cos(x)}.

Proof by Structural Induction: Let Trig = {sin(x), cos(x), -sin(x), -cos(x)}. We will first prove T ⊆ 
Trig. 

Base Case: Since sin(x) is our base case of T and sin(x) ∈ Trig, our base case holds.

Inductive Hypothesis: Assume for some f ∈ T, that f ∈ Trig.



Structural Induction Proofs: Example 3

Proof: Let Trig = {sin(x), cos(x), -sin(x), -cos(x)}. We will first prove T ⊆ Trig by structural 
induction. 

Base Case: Since sin(x) is our base case of T and sin(x) ∈ Trig, our base case holds.

Inductive Hypothesis: Assume for some f ∈ T, that f ∈ Trig.

Inductive Step: Let f ∈ T. By inductive hypothesis, f ∈ Trig. Consider the cases of 
elements generated by f,

Case 1: Let f(x) = sin(x). Then f’(x) = cos(x). So, f’(x) ∈ Trig.

Case 2: Let f(x) = cos(x). Then f’(x) = -sin(x). So, f’(x) ∈ Trig.

Case 3: Let f(x) = -sin(x). Then f’(x) = -cos(x). So, f’(x) ∈ Trig.

Case 4: Let f(x) = -cos(x). Then f’(x) = sin(x). So, f’(x) ∈ Trig.

Therefore, all elements in T are also in Trig so T ⊆ Trig.



Structural Induction Proofs: Example 3

We will now prove Trig ⊆ T. Consider some function f ∊ Trig. Consider the cases from 
Trig,

Case 1: Let f(x) = sin(x). Then f is clearly in T.

Case 2: Let f(x) = cos(x). Since sin(x) ∊ T, by our recursive definition, cos(x) ∊ T.

Case 3: Let f(x) = -sin(x). Since cos(x) ∊ T, by our recursive definition, -sin(x) ∊ T.

Case 4: Let f(x) = -cos(x). Since -sin(x) ∊ T, by our recursive definition, -cos(x) ∊ T.

Therefore Trig ⊆ T. Since we have proved T ⊆ Trig and Trig ⊆ T, T = Trig.



Heap

● Lets store numbers in the nodes of a full binary tree
● The numbers obey the heap property if, for every node x in the tree, the value 

in x is at least as big as the value in each of x’s children



Structural Induction Proofs: Example 4

Prove: If a full binary tree has the heap property, then the value in the root of the 
tree is at least as large as the value in any node of the tree.

Proof by Structural Induction:

Base: Our base case is that we only have one node. If we only have one node, 
then the value is the largest value, so our base holds. 

Inductive Hypothesis: For some tree T, hen the value in the root of the tree is at 
least as large as the value in any node of the tree. 



Structural Induction Proofs: Example 4

Inductive Hypothesis: For some tree T, hen the value in the root of the tree is at least as large 
as the value in any node of the tree. 

Inductive Step: Consider Trees R and L that follow the heap property. Create a tree T that 
consists of a root node, r, and sub trees R and L and follows the heap property. Let x 
and y be the children of R and the roots of R and L, respectively. Since T has the heap 
property the value(r) ≥ value(x) and the value(r) ≥ value(y). Suppose that z is any node of 
T. We need to show that value(r) ≥ value(z). Consider the cases,

Case 1: z = r. Since value(r) ≥ value(z), this case holds.  

Case 2: z is any node in the subtree R. By the inductive hypothesis value(x) ≥ v(z). Since 
value(r) ≥ value(x), value(x) ≥ value(z) and this case holds. 

Case 3: z is any node in the subtree L. By the inductive hypothesis value(y) ≥ v(z). Since 
value(r) ≥ value(y), value(y) ≥ value(z) and this case holds. 

Therefore, f a full binary tree has the heap property, then the value in the root of the tree is at 
least as large as the value in any node of the tree. ☽


