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Constructive Induction

CMSC 250



Introductory Example

* We already know that

n
2__n(n+1)_n2+n
22 2

=1

e But how? Who told us this?

* This is not how math works; we usually do not know the answer
ahead of time!



Making a Good Guess with Calculus

 Calculus tells us that (discrete) sums are approximations of
(continuous) integrals.

* Then, we can observe that:

n n 1

21’%[ xdx ==n?*+c, ceR
. 1 2

1=1

* So we know that the sum ought to be some quadratic function of n.



Making a Good Guess with CS

* Another way to guess the quadratic form would be with plotting!
* Suppose f(n) = Y,i-qi. Then:

y f(O) =Z?:1i =0

¢ f(l) — i1:1i — 1

c fQ)=Y:,i=1+2=3

c f3)=Y3,i=14+2+3=6

« f(30) =% i=1+4+2+--4+30=1465
=1

* We can then fit a curve and see the quadratic curve by ourselves!



Making a Good Guess

* We saw that the sum is some quadratic polynomial. This is all we
know!

* So )i, i is some poly(n) with degree 2, i.e

n

21’ = An?* + Bn + C, ABCER
=1

* How to determine A, B, and C?



General Logic

 Solve as if you had an inductive proof (so IB, IH, IS)

* For every step, we will establish conditions on A, B,C such that the
relevant step is correct.
* Contrast this with directly proving that every step is correct.



Constant C

“IB: LHS is ).7_, i = 0. For RHS to be equal to LHS we
need:

An* +Bn+C=0=>C=0

* So we already know that C = 0.



Co-efficients A, B

* |[H: Assume that the proposition holds for n = 0. Then:

n

2i=An2+Bn

i=1
* |IS: We want to prove that

n n+1

2i=An2+Bn N 2i=A(n+1)2+B(n+1)

=1 =1



Co-efficients A, B

* |[H: Assume that the proposition holds for n = 0. Then:

ik P(n)
2i=An2+Bn —
i

* |IS: We want to prove that

n n+1
21’ — An? + Bn | = 2i=A(n+1)2+B(n+1)

=1 =1
\ }
\ } Y




Co-efficients A, B

n+1 n

Zi=2i+(n+1)£An2+Bn+(n+1)
=1 =1

 We have to equate thisto A(n + 1)*+B(n + 1), since this is what
we’re trying to prove:

A +Bn+(n+1)=An+1D?*+B(n+1) >

MZ+ Bt (n+ 1) =417 + 2An+ A+ B+ B =
n+1=24An+ (A + B)



Co-efficients A, B

n+1=24An+ (A + B)

 This is an equality between polynomials of k, so equating the co-
efficients yields:



Co-efficients A, B

n+1=24An+ (A + B)

* This is an equality between polynomials in nn, so equating the co-
efficients yields:

* Note: The IS did not end up with TRUE, but with conditions on A,B for
it to be TRUE.



All Our Constraints

1. C=0

2. A+B =1

3. 2:-A=1

* AlgebrayieldsA =B =1/,, so:

1 1 nn+1)
= —n% 4+ — 0=
l Zn +2n+ 5

R

o~
1
o



What if Our Guess is Wrong (Over)?

1. Suppose we guess

n
zi =A-n*+B-n“+C-n+D
=1

2. This still works, we will just find A = 0 (try it at homel!)



What if Our Guess is Wrong (Under)?

1. Suppose we guess

n

zi =A-n+B

=1

2. This does not work (infeasible equation), no 4, B € R will satisfy
the constraints (try it at home!)



Another Example (with Bounds!)

* Let a be a sequence defined as follows:

fZ, n=2y0
a, =1 50, n=1
10a,-1 +3ay_2,n =2

* Task: Find an upper bound for a,,.



Another Example (with Bounds!)

* Let a be a sequence defined as follows:

(2, n=0
a, =+ 50, n=1
10a,-1 +3ay_2,n =2

* Task: Find an upper bound for a,,.
* What kind of inductive structure am | expecting?




Another Example (with Bounds!)

* Let a be a sequence defined as follows:

(2, n=0
a, =+ 50, n=1
10a,-1 +3ay_2,n =2

* Task: Find an upper bound for a,,.
* What kind of inductive structure am | expecting?

An inductive base with > 1
elements and a recursive rule
with references to two prior
terms hints towards strong
induction...



Key Step

( 2, n=20
a, =1 50, n=1
10ay-1 +3ay2,n =2

* Because of our experience with sequences like Fibonacci, Tribonacci
that all have this form, we suspect:

a, <C-D", C,DeR



Constraints on C

* |B:
cqu<C-Do2<¢(C
caq;, <C-D'e50<C-D



Inductive Hypothesis

* |B:
cqp<C-DVe2<C
caq,<C-D'e50<C-D

* |H: Letn = 1. Assume that (Vi € {0,1,2,..n})[a; < C - D']



Inductive Step

* |B:
'a()SC‘DO(:)ZSC
cq,<C-D'e50<C-D
e |H: Letn > 1. Assume that Vi € {0,1,2,..n}, a; < C-D".
* IS: |
(Vi € {0,1,2, ..nD[a; < C - D] > (anss < C- D)



Inductive Step

* IS:
(Vi € {O, 1, 2, n})[al < (- Dl] = (an+1 < (C - Dn+1)

* From the definition of a, we have a,,,; = 10a,, + 3a,,_4. Therefore,

a,+q = 10a, +3a,_; <10-C-D"+3-C-D" ! (ByIH)
eWant10-C-D"*"+3.C-Dv1 <(Cc.pntl



Inductive Step

* Want
10-£-D"+3.£.pr-1 < /. pntl o
10-D™+3.-pn1 < pntl

* Dividing both sides by D™~ yields:

10D +3 < D?



All Constraints

1 2<¢C
2.50<C-D
3. 10D +3 < D?

e We deal with constraint 3 first.
e Smallest D € R”Y that satisfies it:



All Constraints

1 2<¢C
2.50<C-D
3. 10D +3 < D?

 We deal with constraint 3 first.
* Smallest D € R~ that satisfies it: NO, WE ARE BUSY PEOPLE AND WE DON’T
WANT TO SPEND TIME SOLVING D% — 10D —3 >0
 Smallest D € N that satisfiesit: D = --- 777 (FIND ONE REAL QUICK, PLZ)



All Constraints

1 2<¢C
2.50<C-D
3. 10D +3 < D?

 We deal with constraint 3 first.
* Smallest D € R~ that satisfies it: NO, WE ARE BUSY PEOPLE AND WE DON’T
WANT TO SPEND TIME SOLVING D% — 10D —3 >0
 Smallest D € N that satisfiesit: D = --- 777 (FIND ONE REAL QUICK, PLZ)

D = 11 works!



All Constraints

1. 2<C

2 50<5C-D

3. 10D +3 < D*?

e Constraint (3) satisfied when D = 11 (just discussed)

* Since we want to find tight bounds for a,,, to minimize ¢ we select

D = 11 and from constraint (2) we have: 50 < C-11 & C = 4.55 =
C‘mi‘n —_ 4‘55



All Constraints

1. 2<5C

2 50<5C-D

3. 10D +3 < D*

e Constraint (3) satisfied when D = 11 (just discussed)

* Since we want to find tight bounds for a,,, to minimize ¢ we select

D = 11 and from constraint (2) we have: 50 < C-11 & C = 4.55 =
C‘mi‘n —_ 4‘55

* Conclusion:
a, < 4.55-11"



Work on This

* A slight modification on the previous sequence:

(10, n=0
a, =1 50, n=1
10ay-1 +3ay_2,n =2

* Assuming that we still suspect a,, < C - D", you solve for the new
C, D right now!



Work on This

* A slight modification on the previous sequence:

(10, n=0
a, =1 50, n=1
10a,-1 +3ay_2,n =2

* Assuming that we still suspect a,, < C - D", solve for the new C, D!
* Your solution oughttobe € = 10,D = 11. What do you observe?



Coin Problem

* In Celestia, there are only 7c and 10c coins.

* We want to find the least monetary amount payable exclusively with
such coins!

* In quantifiers (all gquantifications assumed over N)

(Vn = A)(3An{,ny)[n = 7ny + 10n,]

 Goal: Find constraints on A via constructive induction!
e |B: ??7



Coin Problem

* In Celestia, there are only 7c and 10c coins.

* We want to find the least monetary amount payable exclusively with
such coins!

* In quantifiers (all gquantifications assumed over N)

(Vn = A)(3An{,ny)[n = 7ny + 10n,]

e Goal: Find constraints on A via constructive induction!
e |IB: Defer for later!!!



Coin Problem

* |In Celestia, there are only 7c and 10c coins.

* We want to find the least monetary amount payable exclusively with such
coins!

* In quantifiers (all quantifications assumed over N)

(Vn = A)(3Anq,ny)[n = 7ny + 10n,]

* Goal: Find constraints on A via constructive induction!
e |B: Defer for later!!!
* [H: Assume that forn > A4, (3n,n,)In =7 -n,; + 10n,]|



Coin Problem (IS)

* From the IH we have (3n,,n,)[n =7 -ny + 10n,]
 How can we add/remove coins to get another cent?



Coin Problem (IS)

* From the IH we have (3n,,n,)[n =7 -ny + 10n,]

 How can we add/remove coins to get another cent?
1. ny, = 2:Remove two 10c coins, add three 7c¢ coins

n+1=7n+10n,+1=7n; + 10n, + (21 — 20)
=7y +3)+10(n, — 2)



Coin Problem (IS)

* From the IH we have (3n,,n,)[n =7 -ny + 10n,]

 How can we add/remove coins to get another cent?
1. n, = 2 :Remove two 10c coins, add three 7c¢ coins

n+1=7n+10n,+1=7n; + 10n, + (21 — 20)
=7y +3)+10(n, — 2)

2. nq = 7: Remove seven 7c¢ coins, add five 10c coins

n+1=7n+10n,+1="7n; + 10n, + (50 — 49)
=7(ny —7)+10(n, +5)



Coin Problem (IS)

3. Ny <6)A(n, <1):Maxvalueis6 X 7+ 1 X 10 =52,son < 52.



RECAP

 We’ve shown thatif n = 53, then

((Any,ny)In=7-ny +10n,]) = ((Elnl,nz )[n +1=7-ny+10n, ])

* For which n do we know that ((3a,b € N)[n = 7a + 10b]?

vn = 52 vn > 53 Something
Else




RECAP

 We’ve shown thatif n = 53, then

((Any,ny)In=7-ny +10n,]) = ((Elnl,nz )[n +1=7-ny+10n, ])

* For which n do we know that ((3a,b € N)[n = 7a + 10b]?

Only the implication holds! We don’t have
any hard truth (base) about whether it

Something
El
> EVER holds.




Coin Problem (IS)
3. (ny<6)A(n, <1):Maxvalueis6 X7+1x10=52,son < 52.

* Condition: A > 53.

* Now | need a base case. n
¢ (H?nl,nz € N)[53 =7 nq + 10”2]




Coin Problem (IS)
3. (ny<6)A(n, <1):Maxvalueis6 X7+1x10=052,s0k < 52.

* Condition: A > 53.
* Now | need a base case. n
¢ (H?nl,nz € N)[53 =7 n1 + 10”2]

Prove it at home (use cases)




Coin Problem (IS)
3. (ny<6)A(n, <1):Maxvalueis6 X7+ 1x10=52,s0k < 52.

* Condition: A > 53.

* Now | need a base case. n
¢ (H?nl,nz € N)[SB =7 nq + 10”2]

° (a?nl,nz S N)[54‘ =7- nq + 1077,2]




Coin Problem (IS)
3. (ny<6)A(n, <1):Maxvalueis6 X7+ 1x10=52,s0k < 52.

e Condition: A = 53.

* Now | need a base case.

* (A?7ny,n, EN)[53 =7 -ny + 10n,]
* (A?7ny,n, EN)[54 =7 -n; + 10n,]




RECAP

 We’ve shown thatif n = 53, then

((Any,ny)In=7-n; +10n,]) = ((Elnl,nz)[n +1=7-n;y+10n, ])

* We've also shown that (3,1, € N)[54 = 7r; + 101, |
(7"1 — 2,7"2 — 4)



RECAP

 We’ve shown thatif n = 53, then

((anl,nz)[n =7 nq + 10n2]) = ((Elnl, no )[Tl +1=7"- nq + 10712])
* We’ve also shown that (3ry,7, € N)[54 = 7r; + 107, ]

(n=2r=4)
e What do we know NOW about the theorem?

True for True for Nothin
n>52 n>53 othing




RECAP

 We’ve shown thatif n = 53, then

((Any,ny)In=7-n; +10n,]) = ((Elnl,nz)[n +1=7-n;y+10n, ])

* We've also shown that(3r,1, € N)[5H= 7r; + 101, |
=21, =4)

e What do we know NOW about the theorem?

True for True for Nothin
n>52 n>53 &




Whatis A?

* Recall the theorem (all quantifiers over N ):

(Vn = A)(Any,ny)[n = 7ny + 10n,]

e Our goal was to find A.
* A = 54 works, and is optimal, since A = 53 does not work.



Question

* |s the theorem true for any n < 537

Yes No
(which?) (Why?)



Question

* |s the theorem true for any n < 537

No
(Why?)

0,7,10,14,17,20, 21, 24, 27,28, 30,31, 34, 35,37, 38,40,
41,42,44,45,47,48,49,50,51,52

* Note that there are gaps between these integers!



And Here’s Another

* Let a be a sequence defined as follows:

0, n=20
a. = {12 n=1
" ain| + ajn| + 5n, n=2
zl L

* Then, find C € R such that
(Vn € N)[a,, < C - n]



And Here’s Another

* Let a be a sequence defined as follows:

0, n=200
a. = {12 n=1
" ain| + ajn| + 5n, n=2
zl L

* Then, find C € R such that
(Vn € N)[a,, < C - n]

* We proceed via strong induction on n.



And Here’s Another

* Let a be a sequence defined as follows:

(0, n=20

. n=1

i <a2 + ajn| + 5n, n=2
Clz A

 Then, find C € R such that
(Vn € N)[a,, < C -n]
* We proceed via strong induction on n.

* |n fact, to make some of the math easier, we will assume the hypothesis
until P(n — 1) and prove the step for P(n) instead of P(n + 13/



Finding C

* |B:
* Forn =0,a < C-0 e 0 < 0. Noconstraints on C yet!
*Forn=1,a; <C-ns 2 < (C.Done. We have our first lower bound for C.



Finding C

* |B:
* Forn =0,a < C-0 e 0 < 0. Noconstraints on C yet!
*Forn=1,a; <C-ns 2 < (C.Done. We have our first lower bound for C.

* |[H: Let n 2®Then, assume (Vi € {0,1, 2, ...,@P(i)], where P (i)

meansa; < C -1



Finding C

* |B:
* Forn =0,a < C-0 e 0 < 0. Noconstraints on C yet!
*Forn=1,a; <C-ns 2 < (C.Done. We have our first lower bound for C.

* |[H: Let n 2®Then, assume (Vi € {0,1, 2, ...,@P(i)], where P (i)

meansa; < C -1
* IS: We attempt to prove (P(0) AP(1)) AP(2) A+ A P@) = P(n):

i=n-—1

/\(aiSC-i):»anSC-n

i =0



Finding C

* IS: We attempt to prove (P(1)) AP(2)A--AP(n—1)) = P(n):

i=n-—-1

/\(aiSC-i):anSC-n

i =0

* From the IH, and taking into consideration that 0 < E‘ , E‘ =n,we
have (next slide):



Finding C

* From the IH, and taking into consideration that 0 < E‘ , E‘ =n,we
have:

aln/4JSC° Tl/4 <C-

N SH]| S

n*(3C+20)

n n
°an=aln/zj+aln/4j+5nSC-E+C-Z+5n=



Finding C

e We have:

n*(3C+20)
4

a, <

* We want:
a, <C-n

* Hence, we want a C such that:

n* (3C + 20)
1 <C-'n




Finding C

3C + 20 n>1
Za 1 )SC-ﬁ'@

(3C + 20)

1 <(C&
3C+20<4C &
C = 20
=>Cmin:20




Constraints

e FromtheIB: C = 2
e Fromthe IS: C = 20

* Since we want to minimize C, we set C = 20.
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