An Interesting Sum
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This is standard and | thought | had said it, but | didn’t so | am
saying it now.
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We look at the sums of each set in 24
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SUM({1}) =1
SUM({4}) = 4
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(
E
SUM({1,4})=1+4=5
E
SUM({1,4,5}) = 1+4+5 = 10.
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How Big Can SPS(A) Be?

If |A| = n then how many subsets of A are there? 2".
Could SPS(A) be of size 2"? Work in groups to either
» find an A with [SPS(A)| = 2", or

» show there is no such A.
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A Such that |[SPS(A)| = 2"

Thm Let n > 1. Let A, = {2,...,2"}. Then |[SPS(A)| = 2".
P(A™) has 2" sets. We show all sum-sets diff.

Claim 1 If X, Y C A, have different largest number then
SUM(X) # SUM(Y).

Assume

X C A, and max{X} =2

Y C A, and max{Y} =2/

i<j.

SUM(X) <2t 4 ... 42/ =21+l 2

SUM(Y) > 2.

Since 271 —2 <2/ — 2 < 2/, SUM(X) < SUM(Y).
Claim 2 If X # Y but max{X} = max{ Y} then
SUM(X) # SUM(Y).

| leave this one for you.
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How Small Can SPS(A) Be?

Work in groups to find A C N so that SPS(A) is small.
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A Such that [SPS(A)| < o) 4 g

An=A{1,...,n}.
The minimum SUM is SUM(()) = 0.
The maximum SUM is SUM({1,...,n}) = 221,

So the only possible sums are 0,1,2, ..., %

So |SPS(A,)| <~ "+1) + 1 sums.

Is [SPS(A,)| = ””*1 ) 417
Vote Yes, No, Unknown to Bill.
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SPS(1) = {0,1}.
SPS(1,2) = {0,1,2,3}.
SPS(1,2,3) = {0,1,2,3,4,5,6}.
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Thm For all n > 1, SPS(1,...,n) ={0,.
Pf We prove this by mductlon on n.
BS n=1. SPS(1) = {0,1}. Note 22H) — 1,

IH SPS(1,...,n) = {o RUUERISY
IS Every subset of {1,...,n —|— 1} either:

n(n2+1) }

ey
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SPS(1,...,n) = {0,..., 1)}

Thm For all n > 1, SPS(1, n)z{O,...,%}.
Pf We prove this by mductlon on n.
BS n=1. SPS(1) = {0,1}. Note 22H) — 1,
IH SPS(1,...,n) = {0 RUUERISY
IS Every subset of {1,...,n —|— 1} either:
» Does not use n+ 1.
The number of sumsets for these is
ISPS(L, ..., n)| = 2t 4 1.

> Uses n+ 1. So the sumsets are of the form n+ 1 + x where
x € SPS(1,...,n).
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SPS(1,...,n) = {0,..., ™)} (cont)

SPS(1,...,n+1) =SPS(1,...,n)U(SPS(1,...,n)+ (n+1)).
—{0,..., "oy ({o,..., 2oy | (4 1))

The second unionand is
{(n+1),14(n+1),..., 2020 4 (h4 1)} =
{n+1,n+2,.. . F20et),y




SPS(1,...,n) = {0,..., ™)} (cont)

SPS(1,...,n+1) =SPS(1,...,n)U(SPS(1,...,n)+ (n+1)).
= {0,..., 2 )y ({o,..., oY 4 (p 4 1))

The second unionand is
{(n+1),1+(n+1),..., " 4 (n+1)} =
{n+1,n+2,...,%}.

SO B
SPS(1,...,n+1) = {0,..., (pHn2)y
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Next Slide.
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For AC R>?, |SPS(A)| > "1 1 1 (cont)

Recap

X1 < - < Xpai-

We show 3 > n+ 1 of these sums that are not in SPS(xq, ..., Xp).
Here are the n + 1 subsets.

0) {x1,...,Xn, Xnt1}-

1-n) Forall 1 <i<n, {x1,...,Xn, Xnr1} — {Xi}

We need to show that there n+ 1 sums not in SPS(x1,...,x,) and
all differ from each other.
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For A C R>?,

SPS(A)| > ™=t 1 1 (cont)

Key The largest number in SPS(x1,...,%5) is X1 + -+ + Xp.
0) x1 + -+ Xp + Xpt1 > x1 + - - - + X and hence bigger than
anything in SPS(x1, ..., xn).



For AC R>?, |SPS(A)| > "1 1 1 (cont)

Key The largest number in SPS(x1,...,%5) is X1 + -+ + Xp.
0) x1 + -+ + Xn + Xnt1 > x1 + - - - + xp and hence bigger than
anything in SPS(x1, ..., xn).

1-n) Need

X1 X F X1+t Xl > X F X X XX

Xp1 > Xi.

So all these n+ 1 new sums are > than anything in
SPS(x1, ..., Xn).
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For AC R>?, |SPS(A)| > "1 1 1 (cont)

Easy to show that the new n+ 1 sums are all different from each
other.

|SPS(X17 ce 7X”+1)| 2 |SPS(X1a s 7Xn)| +n+1

< n(n+1)

g (ED(E2)
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Recap What we Know Paying Attention to Domains

We have shown the following:
1. (Vn)(FAC N)[|A| = n ASPS(A)| = 2"]
2. (Vn)(3A C N)[|A| = n A SPS(A)| = 22l 4 1]
3. (¥n)(VA C N)[JA| = n — SPS(A4)| > HH) 4 1]

What if we replace N with another domain?
This is two types of questions:

1. Domain math usually works with: Z, Q, R, C and variants
such as R=9.

2. Unusual domains: Primes, Powers-of-two.



Maximizing |[SPS(A)|

(Vn)(2A C X)[|A| = n A SPS(A)| = 2]



Maximizing |[SPS(A)|

(Vn)(3A C X)[|A] = n ASPS(A)| = 2"
1. The above is true for any X that contains powers of 2.



Maximizing |[SPS(A)|

(Vn)(3A C X)[|A] = n ASPS(A)| = 2"
1. The above is true for any X that contains powers of 2.

2. Work in Groups: Either find an X where the above is False or
prove that, for all X, the above is True.
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Maximizing |[SPS(A)|

(Vn)(3A C X)[|A] = n ASPS(A)| = 2"
FALSE if X is finite. Perhaps you don't want to count that.

TRUE If X is an infinite subset of N. Take numbers that are space
very far apart.

Proof that |[SPS(X)| = 2" is similar to proof that
ISPS(29,..., 2" 1) =2,

Vote TRUE, FALSE, or UNKNOWN TO BILL on the following
statement:

(VX C R)(Vn)(3A C X)[|A| = n ASPS(A)| =27

TRUE but | won't prove it. Try on your own for X = [0, 1].



