
More Induction Problems CMSC 250

1. Prove 21 | (4n+1 + 52n−1) for every positive integer n.

Proof:
Base Case: Let n = 1. So, 4n+1+52n−1 = 41+1+52(1)−1 = 16+5 = 21.
Since 21 | 21, our base holds.
Inductive Hypothesis: Assume for some integer positive integer k,
21 | (4k+1 + 52k−1).
Inductive Step: Consider n = k + 1. So,

4k+1+1 + 52(k+1)−1

4k+2 + 52k+1

(4)4k+1 + 52(52k−1)

(4)4k+1 + 25(52k−1)

(4)4k+1 + (21 + 4)(52k−1)

(4)4k+1 + 21(52k−1) + 4(52k−1)

4(4k+1 + 52k−1) + 21(52k−1)

From our inductive hypothesis, we know 21 | 4k+1+52k−1. Since 21 | 21,
21 | (4(4k+1 + 52k−1) + 21(52k−1)). Therefore by PMI, our statement
holdsÁ

2. Prove that for every positive integer n,

1 +
1√
2
+

1√
3
+ ...+

1√
n
> 2(

√
n+ 1− 1)

Proof:
Base Case: Let n = 1. Then,

2(
√
1 + 1− 1)

= 2(
√
2− 1)

≈ 0.828
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Since 1 > 0.828, our base case holds.
Inductive Hypothesis: Assume for some integer k ≥ 1,

1 +
1√
2
+

1√
3
+ ...+

1√
k
> 2(

√
k + 1− 1)

Inductive Step: Let n = k + 1. So,

1 +
1√
2
+

1√
3
+ ...+

1√
k
+

1√
k + 1

From our inductive hypothesis, we have

1 +
1√
2
+

1√
3
+ ...+

1√
k
+

1√
k + 1

> 2(
√
k + 1− 1) +

1√
k + 1

Note that we need to show

2(
√
k + 1− 1) +

1√
k + 1

> 2(
√

(k + 2)− 1)

So,
1√
k + 1

> 2(
√

(k + 2)− 1)− 2(
√
k + 1− 1)

1√
k + 1

> 2(
√

(k + 2)−
√
k + 1)

Note that we can turn

2(
√

(k + 2)−
√
k + 1)

into
2(
√
k + 2−

√
k + 1)(

√
k + 2 +

√
k + 1)

So,

√
k + 1√
k + 1

+

√
k + 2√
k + 1

> 2(
√
k + 2−

√
k + 1)(

√
k + 2 +

√
k + 1)

Thus,

2 < 1 +

√
k + 2√
k + 1

This is true as k ≥ 1. Therefore by PMI, our statement holds. Á
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3. Given

an =


1 n = 1

3 n = 2

an−2 + 2an−1 n ≥ 3

Prove that an is odd for all integers n ≥ 1.

Proof by Induction:
Base Cases:
Let n = 1 1 is odd
Let n = 2 3 is odd
So, our base cases hold.
Inductive Hypothesis: Assume k ≥ 2 and that ai is odd for all
integers with 1 ≤ i ≤ k.
Inductive Step: Consider, n = k + 1. So,

ak+1 = ak−1 + 2ak

By our inductive hypothesis, ak−1 and ak are odd. So ak−1 = 2h + 1
and ak = 2m+ 1 where h,m ∈ Z. So,

ak+1 = 2h+ 1 + 2(2m+ 1)

= 2h+ 1 + 4m+ 2

= 2h+ 4m+ 2 + 1

= 2(h+ 2m+ 1) + 1

Therefore, ak+1 is odd. So, by principle of mathematical induction, our
statement holds. Á

4. Given

an =


1 n = 1

2 n = 2∑n−1
i=1 (i− 1)ai n ≥ 3

Prove that an = (n− 1)! for all integers n ≥ 3.

Proof by Induction:
Base Cases:
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Let n = 3. Consider,

a3 =
n−1∑
i=1

(i− 1)ai

= (1− 1)(1) + (2− 1)(2) = 0 + 2 = 2

Now consider, (n− 1)!.

(n− 1)! = (3− 1)! = 2! = 2

Since a3 = 2, a3 = (n− 1)!. So, our base case holds.
Inductive Hypothesis: Assume for some k ≥ 3, ak = (k − 1)!
Inductive Step: Let n = k + 1. So,

ak+1 =
k∑

i=1

(i− 1)ai

=
k−1∑
i=1

(i− 1)ai + (k − 1)ak

Note:
∑k−1

i=1 (i− 1)ai = ak. So,

= ak + (k − 1)ak

By our inductive hypothesis,

= (k − 1)! + (k − 1)(k − 1)!

= (k − 1)!(1 + k − 1)

= (k − 1)!(k)

= k!

Therefore by principle of mathematical induction, our statement holds.
Á

5. Given

an =


1 n = 1

2 n = 2
an−1

an−2
n ≥ 3
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(a) Prove that

an =


1 if n ≡ 1, 4 (mod 6)

2 if n ≡ 2, 3 (mod 6)
1
2

if n ≡ 0, 5 (mod 6)

for all positive integers n.

Base Case:
Let n = 1. Since an = 1 and n ≡ 1 (mod 6), this case holds.
Let n = 2. Since an = 2 and n ≡ 2 (mod 6), this case holds.
Inductive Hypothesis: Assume for some k ≥ 2 and 1 ≤ i ≤ k,

ai =


1 if i ≡ 1, 4 (mod 6)

2 if i ≡ 2, 3 (mod 6)
1
2

if i ≡ 0, 5 (mod 6)

Inductive Step: Let n = k + 1. So, ak+1 = ak
ak−1

. Consider the
cases,

Case 1: Let k − 1 ≡ 0 (mod 6) and k ≡ 1 (mod 6). By our
inductive hypothesis,

ak+1 =
1
1
2

= 2

Note if k−1 ≡ 0 (mod 6) and k ≡ 1 (mod 6), k+1 ≡ 2 (mod 6).
So this case holds.

Case 2: Let k − 1 ≡ 1 (mod 6) and k ≡ 2 (mod 6). By our
inductive hypothesis,

ak+1 =
2

1
= 2

Note if k−1 ≡ 1 (mod 6) and k ≡ 2 (mod 6), k+1 ≡ 3 (mod 6).
So this case holds.

Case 3: Let k − 1 ≡ 2 (mod 6) and k ≡ 3 (mod 6). By our
inductive hypothesis,

ak+1 =
2

2
= 1

Note if k−1 ≡ 2 (mod 6) and k ≡ 3 (mod 6), k+1 ≡ 4 (mod 6).
So this case holds.
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Case 4: Let k − 1 ≡ 3 (mod 6) and k ≡ 4 (mod 6). By our
inductive hypothesis,

ak+1 =
1

2

Note if k−1 ≡ 3 (mod 6) and k ≡ 4 (mod 6), k+1 ≡ 5 (mod 6).
So this case holds.

Case 5: Let k − 1 ≡ 4 (mod 6) and k ≡ 5 (mod 6). By our
inductive hypothesis,

ak+1 =
1
2

1
=

1

2

Note if k−1 ≡ 4 (mod 6) and k ≡ 5 (mod 6), k+1 ≡ 0 (mod 6).
So this case holds.

Case 5: Let k − 1 ≡ 5 (mod 6) and k ≡ 0 (mod 6). By our
inductive hypothesis,

ak+1 =
1
2
1
2

= 1

Note if k−1 ≡ 5 (mod 6) and k ≡ 0 (mod 6), k+1 ≡ 1 (mod 6).
So this case holds.

Therefore, by Principle of Mathematical Induction, our statement
holds. Á

(b) Prove that for all nonnegative integers j,
∑6

i=1 aj+i = 7

Base Case:
Let j = 0. So,

6∑
i=1

ai = a1 + a2 + a3 + a4 + a5 + a6

= 1 + 2 + 2 + 1 +
1

2
+

1

2
= 7.

Our base case holds.
Inductive Hypothesis: Assume for some k ≥ 0,

∑6
i=1 ak+i = 7
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Inductive Step: Let j = k + 1. So,

6∑
i=1

ak+1+i = ak+2 + ak+3 + ak+4 + ak+5 + ak+6 + ak+7

= (ak+1 + ak+2 + ak+3 + ak+4 + ak+5 + ak+6) + ak+7 − ak+1

= (
6∑

i=1

ak+i) + ak+7 − ak+1

By our inductive hypothesis,

= 7 + ak+7 − ak+1.

Consider the cases,

Case 1: Let k = 0. k + 1 ≡ 1 (mod 6) and k + 7 ≡ 1 (mod 6).
So,

= 7 + ak+7 − ak+1 = 7 + 1− 1 = 7.

So this case holds.

Case 2: Let k = 1. k + 1 ≡ 2 (mod 6) and k + 7 ≡ 2 (mod 6).
So,

= 7 + ak+7 − ak+1 = 7 + 2− 2 = 7.

So this case holds.

Case 3: Let k = 2. k + 1 ≡ 3 (mod 6) and k + 7 ≡ 3 (mod 6).
So,

= 7 + ak+7 − ak+1 = 7 + 2− 2 = 7.

So this case holds.

Case 4: Let k = 3. k + 1 ≡ 4 (mod 6) and k + 7 ≡ 4 (mod 6).
So,

= 7 + ak+7 − ak+1 = 7 + 1− 1 = 7.

So this case holds.

7



Case 5: Let k = 4. k + 1 ≡ 5 (mod 6) and k + 7 ≡ 5 (mod 6).
So,

= 7 + ak+7 − ak+1 = 7 +
1

2
− 1

2
= 7.

So this case holds.

Case 6: Let k = 5. k + 1 ≡ 0 (mod 6) and k + 7 ≡ 0 (mod 6).
So,

= 7 + ak+7 − ak+1 = 7 +
1

2
− 1

2
= 7.

So this case holds.

Therefore, by Principle of Mathematical Induction, our statement
holds. Á

6. Use Constructive Induction to find constants A,B,C for

n∑
i=1

4i− 3 = An2 +Bn+ C.

Let us guess that

n∑
i=1

4i− 3 = An2 +Bn+ C.

Base Case: Let n = 1. So,

1∑
i=1

4i− 3 = 1

1 = A(1)2 +B(1) + C

1 = A+B + C

Inductive Hypothesis: Assume for some n ≥ 1,

n∑
i=1

4i− 3 = An2 +Bn+ C.
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Inductive Step: Consider n+ 1. So,

n+1∑
i=1

4i− 3 =
n∑

i=1

4i− 3 + 4(n+ 1)− 3

By our Inductive Hypothesis,

An2 +Bn+ C + 4(n+ 1)− 3.

So,

An2 +Bn+ C + 4(n+ 1)− 3 = A(n+ 1)2 +B(n+ 1) + C

An2 +Bn+ C + 4n+ 1 = A(n2 + 2n+ 1) +B(n+ 1) + C

An2 +Bn+ C + 4n+ 1 = An2 + 2An+ A+Bn+B + C

4n+ 1 = 2An+ A+B

Thus,
4 = 2(A)

1 = A+B

So, A = 2 and B = −1. From the Base Case, we had

1 = A+B + C

So, C = 0. Thus our solution give us

n∑
i=1

4i− 3 = 2n2 +−n.

7. Use Constructive Induction to find constants A,B,C,D for

n∑
i=1

i(i+ 2) = An3 +Bn2 + Cn+D.

Let is guess that
an = An3 +Bn2 + Cn+D.
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Base Case:
Let n = 1. So,

1∑
i=1

i(i+ 2) = 1(1 + 2) = 3

A+B + C +D = 3

Inductive Hypothesis:
Assume for some n ≥ 1,

n∑
i=1

i(i+ 2) = An3 +Bn2 + Cn+D

Inductive Step:
Consider n+ 1.

n+1∑
i=1

i(i+ 2) =
n∑

i=1

i(i+ 2) + (n+ 1)(n+ 3)

By inductive hypothesis,

An3+Bn2+Cn+D+(n+1)(n+3) = A(n+1)3+B(n+1)2+C(n+1)+D

An3+Bn2+Cn+D+n2+4n+3 = A(n3+3n2+3n+1)+B(n2+2n+1)+C(n+1)+D

An3+Bn2+Cn+D+n2+4n+3 = An3+3An2+3An+A+Bn2+2Bn+B+Cn+C+D

n2 + 4n+ 3 = 3An2 + 3An+ A+ 2Bn+B + C

Therefore we have the equations,

1 = 3A

4 = 3A+ 2B

3 = A+B + C

Thus, A = 1
3
, B = 3

2
, C = 7

6
, and D = 0. Hence,

n∑
i=1

i(i+ 2) =
1

3
n3 +

3

2
n2 +

7

6
n.
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8. Use Constructive Induction to find constants A,B,C for

an =


1 n = 1

4 n = 2

9 n = 3

an−1 − an−2 + an−3 + 2(2n− 3) n ≥ 4

such that an = An2 +Bn+ C.

Let us guess that
an = An2 +Bn+ C

Base Case:
Consider n = 1,

1 = A(1)2 +B(1) + C

1 = A+B + C

Consider n = 2,
4 = A(2)2 +B(2) + C

4 = 4A+ 2B + C

Consider n = 3,
1 = A(3)2 +B(3) + C

9 = 9A+ 3B + C

Inductive Hypothesis: Assume for some n ≥ 3 and 1 ≤ i ≤ n,

ai = Ai2 +Bi+ C

Inductive Step: Consider n+ 1. So,

an+1 = an − an−1 + an−2 + 2(2(n+ 1)− 3)

By our inductive hypothesis,

an − an−1 + an−2 + 2(2n− 3)
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= (An2+Bn+C)−(A(n−1)2+B(n−1)+C)+(A(n−2)2+B(n−2)+C)+4n−2

= (An2+Bn+C)+(−An2+2An−A−Bn+B−C)+(An2−4An+4A+Bn−2B+C)+4n−2

= An2 − 2An+ 3A+Bn−B + C + 4n− 2

Therefore,

An2 − 2An+ 3A+Bn−B + C + 4n− 2 = A(n+ 1)2 +B(n+ 1) + C

An2+(−2An+Bn+4n)+(3A−B+C−2) = A(n2+2n+1)+B(n+1)+C

An2+(−2An+Bn+4n)+(3A−B+C−2) = An2+2An+A+Bn+B+C

An2+(−2An+Bn+4n)+(3A−B+C−2) = An2+(2An+Bn)+(A+B+C)

(−2An+ 4n) + (3A−B − 2) = (2An) + (A+B)

(4n) + (−2) = (4An) + (−2A+ 2B).

So, we have the equations
4 = 4A

and
−2 = −2A+ 2B.

Thus, A = 1 and B = 0. Now we must go back to our base cases. So,

1 = 1 + 0 + C

4 = 4(1) + 2(0) + C

9 = 9(1) + 3(0) + C.

Therefore, C = 0. Hence, an = n2.

9. Use Constructive Induction to a constant A bound for

n∑
i=1

1

(i+ 2)(i+ 3)

such that an ≤ An

Let us guess that
an ≤ An
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Base Case:
Consider n = 1,

1∑
i=1

1

(i+ 2)(i+ 3)
=

1

(1 + 2)(1 + 3)

=
1

(3)(4)

So,
1

12
≤ An

Inductive Hypothesis:
Assume for some n ≥ 1,

n∑
i=1

1

(i+ 2)(i+ 3)
≤ An

Inductive Step:
Consider n+ 1. So,

n+1∑
i=1

1

(i+ 2)(i+ 3)
=

n∑
i=1

1

(i+ 2)(i+ 3)
+

1

[(n+ 1) + 2][(n+ 1) + 3]

=
n∑

i=1

1

(i+ 2)(i+ 3)
+

1

(n+ 3)(n+ 4)

By inductive hypothesis,

n∑
i=1

1

(i+ 2)(i+ 3)
+

1

(n+ 3)(n+ 4)
≤ An+

1

(n+ 3)(n+ 4)
.

Therefore,

An+
1

(n+ 3)(n+ 4)
≤ A(n+ 1)

An+
1

(n+ 3)(n+ 4)
≤ An+ A

1

(n+ 3)(n+ 4)
≤ A.
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Therefore, A = 1
12
. Hence,

n∑
i=1

1

(i+ 2)(i+ 3)
≤ 1

12
n
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