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THE Reciprocal Theorem

Thm (Yn > 3)(3d1 < --- < dp) such that
1=2+..+2.

n

We will proof this theorem an infinite number of ways.

All of them will be by induction.
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We will usually only need the n = 3 base case:
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We may sometimes need the n = 4 base case:
1,1 .1, 1 _
5+t3+tgtm=1
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IH+IS

IH n > 3. There exists di < --- < d, such that

1
1= il

di Tt d,

IS We prove P(n) — P(n+1).

1 1 i
We use that T=agaT ENCRES)E
1 1 1 1 1 1
1= — 4 f ot -

+ .
o dy dp1  dp+1 " do(dy+1)
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An Induction Scheme

Bill wants to prove (Vn > 3)[P(n)]. So Bill proves
P(3)

P(4)

(Vn > 3)[P(n) — P(n+2)].

This Works! From the above you can construct a proof of P(n)
for any n > 3.

For the case at hand we already did the n = 3 and n = 4 base case.



IH and IS

IH n > 3. There exists dy < --- < d, such that



IH and IS

IH n > 3. There exists dy < --- < d, such that

1=ty
T4 dy’



IH and IS

IH n > 3. There exists dy < --- < d, such that

IS We prove P(n) — P(n+ 2).



IH and IS

IH n > 3. There exists dy < --- < d, such that
1
1=—+- —.

IS We prove P( )—>P(n—|—2)
We use that d 2d +3d +6d



IH and IS

IH n > 3. There exists dy < --- < d, such that
1
1=—+- —.

IS We prove P( )—>P(n—|—2)
We use that d 2d +3d +6d

- 2 o, .t 1
d d, i d,—1  2d, 3d, 6d,
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Proof 2 used

by using

1 1 1 1

d~2d"3d " ed
Can we use any way to write 1 as a sum of reciprocals?

Our next proof does this and make some other points of interest.
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Key Equation

Note that
1 1
1= — +-.
3/2 + 3
Hence
1.1 1
d 3d/2  3d’

Can we use this?

Lets try to use it manually.
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Working Things Out By Hand

1=3+21+2 Use

11 1 111
d 3d/2 ' 6 9 18
1,111
2 3 9 18
PR S R B W1
d  3d/2 18 27 ' 54

_1,1,1,1 1
1=1+14+1+ L4+ 2
Can we keep doing this? Yes.

Can we make this process into a rigorous proof? Discuss
It works so long as the last number is =0 (mod 2).
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Proof a Harder Theorem

Convention = means = (mod 2).
Thm (Vn > 3)(3d1 < - -+ < dp) such that
dn =0 (mod 2), and
_ 1 1
=g+ -+
We are demanding more, since we demand d, = 0.
But we get to use this in the IH.

Loading the IH Proving a harder theorem so that the IH is
stronger.
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IH and IS

IBd=3.1=3+3+%6=0.
IH n > 3. There exists d; < --- < dp such that d, =0 and

bt
di dn’
IS We prove P( ) —> P(n+1).
We use that - 3d 39,72 T 35,1
Since d, =0, 3d /2 €eN.
- NS T S
A d, d dn—1  3d,/2

Also NEED that the last number is = 0. It is since 3d, = d, = 0.



Proof Four. A Different
Approach
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IH and IS

IH n > 3. There exists d; < --- < d, such that

1=ty
d dn’
IS We prove P(n) — P(n+1).
1 1
1= — 4+ ..y —
dljL +d,,
1 1
B
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IH n > 3. There exists d; < --- < d, such that

1
1=—+- -
d1+ +d,,
1—1+ +1
2 2d; 2d,
1 1 1




