The BEE Sequence



The BEE Sequence

The following is known as the BEE sequence:



The BEE Sequence

The following is known as the BEE sequence:

31:1



The BEE Sequence

The following is known as the BEE sequence:
a; = 1
(Vn > 2)[an = an-1+ a|n/2)]



The BEE Sequence

The following is known as the BEE sequence:
ap=1

(Vn > 2)[an = an—1 + a|n/2)]

Why is it called the BEE sequence?



The BEE Sequence

The following is known as the BEE sequence:
ap=1

(Vn = 2)[an = an—1 + ajn/2)]

Why is it called the BEE sequence?

BEE stands for Bill-Emily-Erik.



The BEE Sequence

The following is known as the BEE sequence:
ai=1

(Vn = 2)[an = an—1 + ajn/2)]

Why is it called the BEE sequence?

BEE stands for Bill-Emily-Erik.

We published a paper about how this sequences behaves mod m.



The BEE Sequence

The following is known as the BEE sequence:

ap=1

(Vn = 2)[an = an—1 + ajn/2)]

Why is it called the BEE sequence?

BEE stands for Bill-Emily-Erik.

We published a paper about how this sequences behaves mod m.

Bill Gasarch was the visionary: it was his idea and he wrote it up.



The BEE Sequence

The following is known as the BEE sequence:

ap=1

(Vn = 2)[an = an—1 + ajn/2)]

Why is it called the BEE sequence?

BEE stands for Bill-Emily-Erik.

We published a paper about how this sequences behaves mod m.
Bill Gasarch was the visionary: it was his idea and he wrote it up.

Emily Kaplitz did the programming.



The BEE Sequence

The following is known as the BEE sequence:

ap=1

(Vn = 2)[an = an—1 + ajn/2)]

Why is it called the BEE sequence?

BEE stands for Bill-Emily-Erik.

We published a paper about how this sequences behaves mod m.
Bill Gasarch was the visionary: it was his idea and he wrote it up.
Emily Kaplitz did the programming.

Erik Metz did the hard math.
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History of the Name BEE Sequence

[

. | originally use GKM for Gasarch-Kaplitz-Metz.
2. Emily suggested BEE for Bill-Emily-Erik.

3. Bill agreed and wanted to tell the students the following:
This sequence was the key to studying how a swarm of
bee’s travels.

4. Emily said | cannot use that so long as she is my TA.
5. I'll use the bee story when | teach 250H in Spring 2026.
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Lets Try To Spot a Pattern!

First some empirical observations.

n | ap=an-1+anp2 |an|an (mod 2)
1 ai 1 1
2 a =a;+a 2 0
3 a3 =a +a 3 1
4 as = az+ a 5 1
5 as = aq + a» 7 1
6 ag = as + as 10 0
7 ar = aeg + az 13 1
8 ag =ay+ as 18 1
9 ag — ag + aa 23 1
10 aip = ag + as 30 0
11 a1 = aip + as 37 1

What do you notice about n, a, and Mod 27 Discuss.
If n=1 then a, = 1. Lets Prove This!
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n=1— a, = 1. Induction

IBa;=1=1.

IH ap,_1 = 1.

IS

axn+1 = axn + an by Definition.

axp = axn—1 + an by Definition.

aont1 = @p—1 + 2ap = axp—1 by algebra and 2 =0 (mod 2).
an—1 = 1 by the IH.

Hence azpt1 = agp-1 = 1.
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(3°°n)[a, = 0]

This one does not need induction.
Since for all ODD m, a,; = 1 we have
a, = ay—1+ap =1+ a,.

If nis odd then we have
p=am_1+apr=14+a,=1+1=0.
Upshot For all k

a(2k+1) = B2k+1)-1 T a2+1 =1+1=0.
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A Proof that Does Not Need Induction

Thm For all n
dn+1 = (VY dnt+l1 = 0V do2pn42 = 0.
Pf

Case 1 a,.; = 0. DONE.
Case 2 a5,+1 = 0. DONE.

Case 3 3,11 =1 and appy1 = 1.

api2 =axmy1 +apr1=1+1=0.
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Which Proof Did You Like Better?

Vote Which proof did you like better?

1. The proof where we first show a,, = 1 for odd m, and then
show ay(2411) = 0.

2. The proof where we showed that, for all n,
dnt+1 = (VY don+l = (VY do2p42 = 0.
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Lets Try To Spot a Pattern!

n |an=an-1+apns2 |an|an (mod 3)
1 dai 1 1
2 ap=a+a 2 2
3 a—=ax+a 3 0
4 as=az+ ap 5 2
5 as = a4 + a 7 1
6 3 = as + az 10 1
7 ar = ag + a3 13 1
8 ag = ar+as 18 0
9 ag = ag + aa 23 2
10 aijo = ag + as 30 0
11 ai1 = aig + as 37 1

What do you notice about n, a, and Mod 37 Discuss. NOTHING!
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3°°n with a, =0

Thm For all n

a+1 =0V a1 =0V a2 =0V agp3 =0.
Pf

Case 1 a,.; =0. DONE.

Case 2 a,.1 = 0. DONE.

Case 3 3,11 = 1.

ant2 = apt1 + any1 = a2pg1 + 1
a2nt3 = @2py2 + ant1 = azpt1 + 2.
Case 3a a1 =1

Hpt3 =amt1+2=1+2=0.
Case 3b ay,11 =2

a2 =amr1+1=24+1=0.
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In this section all = are mod 4.
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8 2

ag=ay+ as 18
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5 as = ag + a 7 3
6 ag = as + as 10 2
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8 ag =ay+ as 18 2
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ag — ag + aa 23
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n | ap=an-1+3anp |an|an (mod 4)
1 a 1 1
2 a=a; +a 2 2
3 a=a+a 3 3
4 as = az+ a 5 1
5 as = ag + a 7 3
6 ag = as + as 10 2
7 a7y = ap + a3 13 1
8 ag =ay+ as 18 2
9 ag — ag + aa 23 3
10 aip = ag + as 30 2




The First Few Values Mod 4

In this section all = are mod 4.
n | ap=an-1+3anp |an|an (mod 4)
1 a 1 1
2 a=a; +a 2 2
3 a=a+a 3 3
4 as = az+ a 5 1
5 as = ag + a 7 3
6 ag = as + as 10 2
7 a7y = ap + a3 13 1
8 ag =ay+ as 18 2
9 ag — ag + aa 23 3
10 aip = ag + as 30 2
11 ail = aio + as 37 1




The First Few Values Mod 4

ai0 = dg + as 30
ai1 = aig + as 37

In this section all = are mod 4.
n | ap=an-1+3anp |an|an (mod 4)
1 a 1 1
2 a=a; +a 2 2
3 a=a+a 3 3
4 as = az+ a 5 1
5 as = ag + a 7 3
6 ag = as + as 10 2
7 a7y = ap + a3 13 1
8 ag =ay+ as 18 2
9 ag — ag + aa 23 3
10 2
11 1

Question (3*°n)[a, = 0]?



The First Few Values Mod 4

ai0 = dg + as 30
ai1 = aig + as 37

In this section all = are mod 4.
n | ap=an-1+3anp |an|an (mod 4)
1 a 1 1
2 a=a; +a 2 2
3 a=a+a 3 3
4 as = az+ a 5 1
5 as = ag + a 7 3
6 ag = as + as 10 2
7 a7y = ap + a3 13 1
8 ag =ay+ as 18 2
9 ag — ag + aa 23 3
10 2
11 1

Question (3*°n)[a, = 0]?
Vote YES, NO, UNKNOWN TO G-K-M?
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2. Erik proved that this was true and emailed Bill a sketch. The
proof is by induction and could be presented to you, but is
complicated so | will probably skip it.



What is Known

1. Emily wrote a program that checked and found the following:
Forall 1 < n <105 a,#0 (mod 4).

2. Erik proved that this was true and emailed Bill a sketch. The
proof is by induction and could be presented to you, but is
complicated so | will probably skip it.

3. Bill wrote it up.
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The First Few Values Mod 5

In this section all = are mod 5.

n

an = an—1+ a|n/2|
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The First Few Values Mod 5

In this section all = are mod 5.
n |ap=an1+aps |an|an (mod5)
1 a 1 1
2 a =a;+a 2 2
3 a=a+a 3 3
4 as = a3+ a 5 0




The First Few Values Mod 5

In this section all = are mod 5.

n |ap=an1+aps |an|an (mod5)

A =az+a
as = aq + a2

al 1 1

a =a;+a 2 2
a=a+a 3 3
5 0

7 2
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The First Few Values Mod 5

In this section all = are mod 5.

n |ap=an1+aps |an|an (mod5)

al 1
a =a;+a 2
a=a+a 3
ag = az+ a» 5
as = a4 + a 7
ag = as + a3 10
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The First Few Values Mod 5

In this section all = are mod 5.

n |ap=an1+aps |an|an (mod5)

al 1
a =a;+a 2
a=a+a 3
ag = az+ a» 5
as = a4 + a 7
ag = as + a3 10
ar = ag + a3 13
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The First Few Values Mod 5

In this section all = are mod 5.

n |ap=an1+aps |an|an (mod5)

1 ai 1 1
2 a =a;+a 2 2
3 a=a+a 3 3
4 ag = az+ a» 5 0
5 as = ag + a» 7 2
6 g = a5 + az 10 0
7 a; = as + as 13 3
8 3

ag —=ar+as 18




The First Few Values Mod 5

In this section all = are mod 5.

n |ap=an1+aps |an|an (mod5)

1 ai 1 1
2 a =a;+a 2 2
3 a=a+a 3 3
4 ag = az+ a» 5 0
5 as = ag + a» 7 2
6 g = a5 + az 10 0
7 a; = as + as 13 3
8 ag —=ar+as 18 3
9 3

ag = ag + as 23




The First Few Values Mod 5

In this section all = are mod 5.
n |ap=an1+aps |an|an (mod5)
1 a 1 1
2 a =a;+a 2 2
3 a=a+a 3 3
4 ag = az+ a» 5 0
5 as = ag + a» 7 2
6 g = a5 + az 10 0
7 a; = as + as 13 3
8 ag —=ar+as 18 3
9 a9 = ag + as 23 3
10 aio = ag + as 30 0




The First Few Values Mod 5

In this section all = are mod 5.
n |ap=an1+aps |an|an (mod5)
1 a 1 1
2 a =a;+a 2 2
3 a=a+a 3 3
4 ag = az+ a» 5 0
5 as = ag + a» 7 2
6 g = a5 + az 10 0
7 a; = as + as 13 3
8 ag —=ar+as 18 3
9 a9 = ag + as 23 3
10 aio = ag + as 30 0
11 aj; = aig + as 37 2




The First Few Values Mod 5

In this section all = are mod 5.
n |ap=an1+aps |an|an (mod5)
1 a 1 1
2 a =a;+a 2 2
3 a=a+a 3 3
4 ag = az+ a» 5 0
5 as = ag + a» 7 2
6 g = a5 + az 10 0
7 a; = as + as 13 3
8 ag —=ar+as 18 3
9 a9 = ag + as 23 3
10 aio = ag + as 30 0
11 aj; = aig + as 37 2

No pattern here. But a; = ag = 0.
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We will use ag = 0 to get some larger n with a, = 0.
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a2 = a1l +ae = an

a13 = a2 + a6 = az.

So we get

dil = di2 = ai3.



Lets Use ag = 0

We will use ag = 0 to get some larger n with a, = 0.
ag is used for both aj» and ajs.

aip = ai1 +ae = a1
ai3 = a2 + apg = a.
So we get

dil = di2 = ai3.

Lets use that!
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let aj1 =app=ai3=r

The sequence uses aj; for ax and a3
The sequence uses ajp for axs and ass
The sequence uses aj3 for axs and a7
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Lets Use a;1 = ajp = a3

let aj1 =app=ai3=r
The sequence uses aj; for ax and a3

The sequence uses ajp for axs and ass
The sequence uses aj3 for axs and a7

ap =ax t+aig=an+r
ax3 = axp +air = a1 +r+ain=axn +2r
ax = ax3 + a1 = ax +2r +ap = an +3r



Lets Use a;1 = ajp = a3

let aj1 =app=ai3=r

The sequence uses aj; for
The sequence uses ajp for
The sequence uses aj3 for

ax =
a3 =
a4 =
axs =

a1 + an
ar» + a1
a3 + a2
az4 + ae

as +r

dno and dan3
anag and djos
ar and a7

a1 +r+ a1 = an +2r

ar1 + 2r + ap
a1 + 3r + a1

ar1 + 3r
ax +4r



Lets Use a;1 = ajp = a3

let aj1 =app=ai3=r
The sequence uses aj; for ax and a3

The sequence uses ajs for axs and ans

The sequence uses aj3 for axs and a7

ap =ax t+aig=an+r

ax3 = axp +air = a1 +r+ain=axn +2r
ax = ax3 + a1 = ax +2r +ap = an +3r
axs = ax + a2 = ao1 + 3r + aip = ax1 +4r
Continued Next Slide.
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let aji=app=ai3=r



Lets Use a;; = ajp = a3 (cont)

let aji=app=ai3=r

ax = ap1tai1 =ap1+r



Lets Use a;; = ajp = a3 (cont)

let aji=app=ai3=r

axp =ap1 taig =ax +r
a3 = ax + a1 = ax1 +2r



Lets Use a;; = ajp = a3 (cont)

let aji=app=ai3=r
axp =ap1 taig =ax +r
a3 = ax + a1 = ax1 +2r
a4 = ar3z + aip = an1 + 3r



Lets Use a;; = ajp = a3 (cont)

let aji=app=ai3=r

axp =ap1 taig =ax +r

a3 = axp +ai1 = az1 +2r
axs = ax3 + aip = ao1 + 3r
axs = axq + a2 = ax1 +4r



Lets Use a;; = ajp = a3 (cont)

let aji=app=ai3=r

a» =axy tail1=axn+r

a3 = ax + a1 = an +2r
ax, = a3 +ap = ag1 +3r
axs = azq + 312 = ap1 +4r

Case 0 r = 0. DONE, a;; = 0. Later cases assume r % 0.



Lets Use a;; = aj2 = ai13 (cont)

let aji=app=ai3=r

a» =axy tail1=axn+r

a3 = ax + a1 = an +2r
ax, = a3 +ap = ag1 +3r
axs = azq + 312 = ap1 +4r

Case 0 r = 0. DONE, a;; = 0. Later cases assume r % 0.
Case 1 ay; = 0. DONE. Later cases assume a»; # 0.



Lets Use a;; = aj2 = ai13 (cont)

let aji=app=ai3=r

axp =ap1 taig =ax +r
a3 = axp +ai1 = az1 +2r
a4 = ar3z + aip = an1 + 3r

axs = azq + 312 = ap1 +4r
Case 0 r = 0. DONE, a;; = 0. Later cases assume r % 0.
Case 1 ay; = 0. DONE. Later cases assume a»; # 0.

Case 2 Whats left.
One of apy + r, as1 +2r, ap1 +3r, a1 +4ris=0.
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We prove (3°°n)[a, = 0].

The proof is by induction. Finally an induction proof!

Thm (Vn)(3in < --- < ip)lay =--- = aj, =0].
IB For n =1 take i; = 6. Note that ag = 0.
IHa,=---=3a;, =0.

IS Let i, = m. We use ap, = 0 to show (Im’ > m)[a,y = 0].



Can We Generalize This Approach? Yes

We prove (3°°n)[a, = 0].

The proof is by induction. Finally an induction proof!

Thm (Vn)(3in < --- < ip)lay =--- = aj, =0].
IB For n =1 take i; = 6. Note that ag = 0.
IHa,=---=3a;, =0.

IS Let i, = m. We use ap, = 0 to show (Im’ > m)[a,y = 0].
Continued on Next Slide.
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Can We Generalize This Approach? Yes (Cont)

We will use a,, = 0 to get some larger m’ with a,y = 0.
am is used for both a;, and azm+1-

am = am-1+tam= a2m-1
Am+1 = B2m + am = 32m-1.
So we get

A2m—-1 = a@2m = a2m+1-

Lets use that!
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Let avm—1 = aom = amt1 =1

The sequence uses ar,,—1 for agm—o> and agm_1
The sequence uses az, for agm and agm41
The sequence uses army1 for asmio and agmi3
Agm—2 = A4m-3 + A2m—1 = agm-3 + r
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Lets Use a1 = am = a2m+1

Let avm—1 = aom = amt1 =1

The sequence uses ar,,—1 for agm—o> and agm_1
The sequence uses az, for agm and agm41
The sequence uses army1 for asmio and agmi3
Agm—2 = A4m-3 + A2m—1 = agm-3 + r

4m—1 = asm-2 + A2m—1 = a4m—3 +2r

asm = aym—1 + am = asm-3 + 3r

Aam+1 = aam + a2m = asm—3 +4r

Continued Next Slide.
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Lets Use a1 = am = a2m+1

AUm—2 = A4m-3 + a2m—-1 = agm-3 + r

asm—1 = asm—2 + @m—1 = aam—3 + 2r

m = am-1+ a2m = asm-3 + 3r

a4m+1 = a4m + a2m = aam—3 + 4r

Case 0 r =0. DONE, az;,—1 = 0. Later cases assume r # 0.

Case 1 az,—3 = 0. DONE. Later cases assume agm—3 # 0.



Lets Use a1 = am = a2m+1

AUm—2 = A4m-3 + a2m—-1 = agm-3 + r

asm—1 = asm—2 + @m—1 = aam—3 + 2r

m = am-1+ a2m = asm-3 + 3r

a4m+1 = a4m + a2m = aam—3 + 4r

Case 0 r = 0. DONE, as,,_1 = 0. Later cases assume r Z 0.
Case 1 az,—3 = 0. DONE. Later cases assume agm—3 # 0.

Case 2 Whats left.
One of agm_3 + r, agm—3 + 2r, asm—3 + 3r, agm—_3 + 4r is = 0.



Lets Use a1 = am = a2m+1

AUm—2 = A4m-3 + a2m—-1 = agm-3 + r

asm—1 = asm—2 + @m—1 = aam—3 + 2r

agm = agm-1+ a2m = asm-3 + 3r

4m+1 = a4m + dom = asm—3 + 4r

Case 0 r = 0. DONE, as,,_1 = 0. Later cases assume r Z 0.
Case 1 az,—3 = 0. DONE. Later cases assume agm—3 # 0.
Case 2 Whats left.

One of agm_3 + r, agm—3 + 2r, asm—3 + 3r, agm—_3 + 4r is = 0.
So we have an m’ > m such that a,y = 0.
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The First Few Values Mod 7

In this section all = are mod 7

n

an = an-1+ a|n/2|

an

dn

(mod 7)
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In this section all = are mod 7
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The First Few Values Mod 7

In this section all = are mod 7
n |ap=an1+app |an|an (mod7)
1 ai 1 1
2 a =ay+a 2 2
3 a=a+a 3 3
4 as = a3+ a 5 5




The First Few Values Mod 7

In this section all = are mod 7

n |ap=an1+app |an|an (mod7)

al
a=a+a
a=a-+a

A = a3+ a
as = a4 + a2
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The First Few Values Mod 7

In this section all = are mod 7

n |ap=an1+app |an|an (mod7)

al 1
a =a;+a 2
a3 =ax+a 3
as = az+ a» 5
as = as + a 7
3 = as + a3 10
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The First Few Values Mod 7

In this section all = are mod 7

n |ap=an1+app |an|an (mod7)

al 1
a =a;+a 2
a3 =ax+a 3
as = az+ a» 5
as = as + a 7
3 = as + a3 10
ar = ag + a3 13
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The First Few Values Mod 7

In this section all = are mod 7

n |ap=an1+app |an|an (mod7)

1 ai 1 1
2 a =ay+a 2 2
3 a3 =ax+a 3 3
4 as = az+ a» 5 5
5 as = ag + a» 7 0
6 g = a5 + az 10 3
7 a; = as + as 13 6
8 4

ag = ar+as 18




The First Few Values Mod 7

In this section all = are mod 7

n |ap=an1+app |an|an (mod7)

1 ai 1 1
2 a =ay+a 2 2
3 a3 =ax+a 3 3
4 as = az+ a» 5 5
5 as = ag + a» 7 0
6 g = a5 + az 10 3
7 a; = as + as 13 6
8 ag = ar+as 18 4
9 2

ag = ag + a4 23




The First Few Values Mod 7

In this section all = are mod 7
n |ap=an1+app |an|an (mod7)
1 ai 1 1
2 a =ay+a 2 2
3 a3 =ax+a 3 3
4 as = az+ a» 5 5
5 as = ag + a» 7 0
6 g = a5 + az 10 3
7 a7 = ag + a3 13 6
8 ag = ar+as 18 4
9 ag = ag + a4 23 2
10 aip = a9 + as 30 2




The First Few Values Mod 7

In this section all = are mod 7
n |ap=an1+app |an|an (mod7)
1 ai 1 1
2 a =ay+a 2 2
3 a3 =ax+a 3 3
4 as = az+ a» 5 5
5 as = ag + a» 7 0
6 g = a5 + az 10 3
7 a7 = ag + a3 13 6
8 ag = ar+as 18 4
9 ag = ag + a4 23 2
10 aip = a9 + as 30 2
11 aj; = aig + as 37 2

No pattern here. But a5 =0 (mod 7).
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Lets Try Same Approach as Mod 5

We will use a,,, = 0 to get some larger m’ with a,y = 0.
am is used for both ap, and azmy1-

m = a2m-1+am = a2m-1
A2m+1 = a2m +am = aam-1
So we get

A2m—-1 = a2m = a2m+1-

Lets use that!



Lets Use az;—1 = am = a2m+1

WORK ON THIS IN GROUPS.
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Lets Use a1 = am = a2m+1

Let avm—1 = aom = aom+1 = r

A4m—2 = A4m-3 T @2m—1 = A4m-3 + r
Aam—1 = A4m—2 + @m—1 = asm-3 + 2r
Agm = A4m—1+ a2m = agm-3 + 3r
a4m+1 = a4m + a2m = aam—3 + 4r
aam+2 = am+1 + 32m+1 = aam-3 + 5r
aam+3 = a4m+2 + A2m+1 = asm—3 + 6r



Lets Use a1 = am = a2m+1

Let avm—1 = aom = aom+1 = r

aam—2 = A4m-3 + @2m-1 = agm-3 + r

Aam—1 = A4m—2 + @m—1 = asm-3 + 2r

m = m-1+ a2m = asm-3 + 3r

a4m+1 = a4m + a2m = aam—3 + 4r

aam+2 = am+1 + 32m+1 = aam-3 + 5r

aam+3 = a4m+2 + A2m+1 = asm—3 + 6r

Since have {r,2r,3r,4r,5r,6r} proof is similar to Mod 5.
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The First Few Values Mod 9

(We skip mod 8 since mod 4 didn’t work).
In this section all = are mod 9.

n

apn = ap-1+ a2

dn

(mod 9)




The First Few Values Mod 9

(We skip mod 8 since mod 4 didn’t work).

In this section all = are mod 9.
n |ap=an-1+app |an|an (mod9)
1 a 1 1




The First Few Values Mod 9

(We skip mod 8 since mod 4 didn’t work).

In this section all = are mod 9.
n |ap=an-1+app |an|an (mod9)
1 a 1 1
2 a=ai+a 2 2




The First Few Values Mod 9

(We skip mod 8 since mod 4 didn’t work).

In this section all = are mod 9.
n |ap=an-1+app |an|an (mod9)
1 a 1 1
2 a=a +a 2 2
3 a3 =a+a 3 3




The First Few Values Mod 9

(We skip mod 8 since mod 4 didn’t work).

In this section all = are mod 9.
n |ap=an-1+app |an|an (mod9)
1 a 1 1
2 a=ai+a 2 2
3 a3 =a+a 3 3
4 as = az+ a» 5 5




The First Few Values Mod 9

(We skip mod 8 since mod 4 didn’t work).
In this section all = are mod 9.

n |ap=an-1+app |an|an (mod9)

al
a=a+a
a=a+a
as =as+ a
as = as + ao

1w N
~N o w N
~N O w N




The First Few Values Mod 9

(We skip mod 8 since mod 4 didn’t work).

In this section all = are mod 9.
n |ap=an-1+app |an|an (mod9)
1 a 1 1
2 a=a +a 2 2
3 a3 =a+a 3 3
4 as = az+ a» 5 5
5 as = ag + a» 7 7
6 ag = as + as 10 1




The First Few Values Mod 9

(We skip mod 8 since mod 4 didn’t work).

In this section all = are mod 9.
n |ap=an-1+app |an|an (mod9)
1 a 1 1
2 a=ai+a 2 2
3 a3 =a+a 3 3
4 as = az+ a» 5 5
5 as = ag + a» 7 7
6 ag = as + as 10 1
7 a7 = ap + a3 13 4




The First Few Values Mod 9

(We skip mod 8 since mod 4 didn’t work).

In this section all = are mod 9.
n |ap=an-1+app |an|an (mod9)
1 a 1 1
2 a =a; +a 2 2
3 a3 =ax+a 3 3
4 as = az+ a» 5 5
5 as = ag + a» 7 7
6 ag = as + as 10 1
7 a7 = ap + a3 13 4
8 ag —=ar+a 18 0




The First Few Values Mod 9

(We skip mod 8 since mod 4 didn’t work).

In this section all = are mod 9.
n |ap=an-1+app |an|an (mod9)
1 a 1 1
2 a =a; +a 2 2
3 a3 =ax+a 3 3
4 as = az+ a» 5 5
5 as = ag + a» 7 7
6 ag = as + as 10 1
7 a7 = ap + a3 13 4
8 ag —=ar+a 18 0
9 dg = ag + as 23 5




The First Few Values Mod 9
(We skip mod 8 since mod 4 didn’t work).

In this section all = are mod 9.
n |ap=an-1+app |an|an (mod9)
1 a 1 1
2 a =a; +a 2 2
3 a3 =ax+a 3 3
4 as = az+ a» 5 5
5 as = ag + a» 7 7
6 ag = as + as 10 1
7 a7 = ap + a3 13 4
8 ag —=ar+a 18 0
9 dg = ag + as 23 5
10 ajp = ag + as 30 3




The First Few Values Mod 9
(We skip mod 8 since mod 4 didn't work).

In this section all = are mod 9.
n |ap=an-1+app |an|an (mod9)
1 a 1 1
2 a =a; +a 2 2
3 a3 =ax+a 3 3
4 as = az+ a» 5 5
5 as = ag + a» 7 7
6 ag = as + as 10 1
7 a7 = ap + a3 13 4
8 ag —=ar+a 18 0
9 dg = ag + as 23 5
10 a0 = ag + as 30 3
11 aj; = aig + as 37 1




The First Few Values Mod 9
(We skip mod 8 since mod 4 didn't work).

In this section all = are mod 9.
n |ap=an-1+app |an|an (mod9)
1 a 1 1
2 a =a; +a 2 2
3 a3 =ax+a 3 3
4 as = az+ a» 5 5
5 as = ag + a» 7 7
6 ag = as + as 10 1
7 a7 = ap + a3 13 4
8 ag —=ar+a 18 0
9 dg = ag + as 23 5
10 a0 = ag + as 30 3
11 aj; = aig + as 37 1

No pattern here. But ag =0 (mod 9).
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All = are mod 9

We get the same equation:
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Lets Try Same Approach as Mod 5

All = are mod 9

We get the same equation:

A2m—1 = a@2m = a2m+1-

WORK IN GROUPS TO GET SOME a,y = 0.
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Vote on Mod 9

| suspect you did not succeed. Vote
1. (3°°n)[an, = 0] and this has been proven (with a new
technique | have not shown yet).

2. There is NOT an infinite number of a, with a, = 0 and this
has been proven.

3. The question is UNKNOWN TO G-K-M



