The following is known as the BEE sequence:

The following is known as the BEE sequence:

$$a_1 = 1$$

The following is known as the BEE sequence:

$$a_1 = 1$$
$$(\forall n \ge 2)[a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}]$$

The following is known as the BEE sequence:

$$a_1 = 1$$

$$(\forall n \geq 2)[a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}]$$

Why is it called the BEE sequence?

The following is known as the BEE sequence:

$$a_1 = 1$$

$$(\forall n \geq 2)[a_n = a_{n-1} + a_{|n/2|}]$$

Why is it called the BEE sequence?

BEE stands for Bill-Emily-Erik.

The following is known as the BEE sequence:

$$a_1 = 1$$

$$(\forall n \geq 2)[a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}]$$

Why is it called the BEE sequence?

BEE stands for Bill-Emily-Erik.

We published a paper about how this sequences behaves mod m.

The following is known as the BEE sequence:

$$a_1 = 1$$

$$(\forall n \geq 2)[a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}]$$

Why is it called the BEE sequence?

BEE stands for Bill-Emily-Erik.

We published a paper about how this sequences behaves mod m.

Bill Gasarch was the visionary: it was his idea and he wrote it up.

The following is known as the BEE sequence:

$$a_1 = 1$$

$$(\forall n \geq 2)[a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}]$$

Why is it called the BEE sequence?

BEE stands for Bill-Emily-Erik.

We published a paper about how this sequences behaves mod m.

Bill Gasarch was the visionary: it was his idea and he wrote it up.

Emily Kaplitz did the programming.

The following is known as the BEE sequence:

$$a_1 = 1$$

$$(\forall n \geq 2)[a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}]$$

Why is it called the BEE sequence?

BEE stands for Bill-Emily-Erik.

We published a paper about how this sequences behaves mod m.

Bill Gasarch was the visionary: it was his idea and he wrote it up.

Emily Kaplitz did the programming.

Erik Metz did the hard math.

1. I originally use GKM for Gasarch-Kaplitz-Metz.

- 1. I originally use GKM for Gasarch-Kaplitz-Metz.
- 2. Emily suggested BEE for Bill-Emily-Erik.

- 1. I originally use GKM for Gasarch-Kaplitz-Metz.
- 2. Emily suggested BEE for Bill-Emily-Erik.
- 3. Bill agreed and wanted to tell the students the following:

- 1. I originally use GKM for Gasarch-Kaplitz-Metz.
- 2. Emily suggested BEE for Bill-Emily-Erik.
- Bill agreed and wanted to tell the students the following:
 This sequence was the key to studying how a swarm of bee's travels.

- 1. I originally use GKM for Gasarch-Kaplitz-Metz.
- 2. Emily suggested BEE for Bill-Emily-Erik.
- Bill agreed and wanted to tell the students the following:
 This sequence was the key to studying how a swarm of bee's travels.
- 4. Emily said I cannot use that so long as she is my TA.

- 1. I originally use GKM for Gasarch-Kaplitz-Metz.
- 2. Emily suggested BEE for Bill-Emily-Erik.
- Bill agreed and wanted to tell the students the following:
 This sequence was the key to studying how a swarm of bee's travels.
- 4. Emily said I cannot use that so long as she is my TA.
- 5. I'll use the bee story when I teach 250H in Spring 2026.

The BEE Sequence Mod 2

|--|

	od 2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 2)
1	a ₁	1		1
2	$a_2=a_1+a_1$	2		0

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 2)
1	2.	1		1
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		0
3	$a_3 = a_2 + a_1$	3		1
	•			·

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	an	(mod 2)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		0
3	$a_3 = a_2 + a_1$	3		1
4	$a_4 = a_3 + a_2$	5		1
	'			'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 2)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		0
3	$a_3 = a_2 + a_1$	3		1
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		1
	'	•	•	

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	an	(mod 2)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		0
3	$a_3 = a_2 + a_1$	3		1
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		0
		1		'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 2)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		0
3	$a_3 = a_2 + a_1$	3		1
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		1
		'	'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 2)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		0
3	$a_3 = a_2 + a_1$	3		1
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		1
	•	,	'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 2)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		0
3	$a_3 = a_2 + a_1$	3		1
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		1
9	$a_9 = a_8 + a_4$	23		1
		ļi		'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 2)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		0
3	$a_3 = a_2 + a_1$	3		1
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		1
9	$a_9 = a_8 + a_4$	23		1
10	$a_{10} = a_9 + a_5$	30		0
		1	'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 2)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		0
3	$a_3 = a_2 + a_1$	3		1
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		1
9	$a_9 = a_8 + a_4$	23		1
10	$a_{10} = a_9 + a_5$	30		0
11	$a_{11} = a_{10} + a_5$	37		1

All \equiv in this section are mod 2.

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 2)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		0
3	$a_3 = a_2 + a_1$	3		1
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		1
9	$a_9 = a_8 + a_4$	23		1
10	$a_{10} = a_9 + a_5$	30		0
11	$a_{11} = a_{10} + a_5$	37		1

Question $(\exists^{\infty} n)[a_n \equiv 0]$?

All \equiv in this section are mod 2.

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 2)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		0
3	$a_3 = a_2 + a_1$	3		1
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		1
9	$a_9 = a_8 + a_4$	23		1
10	$a_{10} = a_9 + a_5$	30		0
11	$a_{11} = a_{10} + a_5$	37		1

Question $(\exists^{\infty} n)[a_n \equiv 0]$?

Vote YES, NO, UNKNOWN TO G-K-M?

First some empirical observations.

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 2)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		0
3	$a_3 = a_2 + a_1$	3		1
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		1
9	$a_9 = a_8 + a_4$	23		1
10	$a_{10} = a_9 + a_5$	30		0
11	$a_{11} = a_{10} + a_5$	37		1

First some empirical observations.

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	an	(mod 2)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		0
3	$a_3 = a_2 + a_1$	3		1
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		1
9	$a_9 = a_8 + a_4$	23		1
10	$a_{10} = a_9 + a_5$	30		0
11	$a_{11}=a_{10}+a_5$	37		1

What do you notice about n, a_n and Mod 2? Discuss.

First some empirical observations.

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	an	(mod 2)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		0
3	$a_3 = a_2 + a_1$	3		1
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		1
9	$a_9 = a_8 + a_4$	23		1
10	$a_{10} = a_9 + a_5$	30		0
11	$a_{11}=a_{10}+a_5$	37		1

What do you notice about n, a_n and Mod 2? Discuss.

If $n \equiv 1$ then $a_n \equiv 1$.

First some empirical observations.

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	an	(mod 2)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		0
3	$a_3 = a_2 + a_1$	3		1
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		1
9	$a_9 = a_8 + a_4$	23		1
10	$a_{10} = a_9 + a_5$	30		0
11	$a_{11}=a_{10}+a_5$	37		1

What do you notice about n, a_n and Mod 2? Discuss.

If $n \equiv 1$ then $a_n \equiv 1$. Lets Prove This!

$$n \equiv 1 \rightarrow a_n \equiv 1$$
. Induction

IB
$$a_1 = 1 \equiv 1$$
.

$$n \equiv 1 \rightarrow a_n \equiv 1$$
. Induction

IB
$$a_1 = 1 \equiv 1$$
.

IH
$$a_{2n-1} \equiv 1$$
.

$$n \equiv 1 \rightarrow a_n \equiv 1$$
. Induction

IB $a_1 = 1 \equiv 1$. IH $a_{2n-1} \equiv 1$.

$$n \equiv 1 \rightarrow a_n \equiv 1$$
. Induction

IB
$$a_1 = 1 \equiv 1$$
.

IH
$$a_{2n-1} \equiv 1$$
.

$$a_{2n+1} = a_{2n} + a_n$$
 by Definition.

IB
$$a_1 = 1 \equiv 1$$
.

IH
$$a_{2n-1} \equiv 1$$
.

$$a_{2n+1} = a_{2n} + a_n$$
 by Definition.

$$a_{2n} = a_{2n-1} + a_n$$
 by Definition.

IB
$$a_1 = 1 \equiv 1$$
.

IH
$$a_{2n-1} \equiv 1$$
.

$$a_{2n+1} = a_{2n} + a_n$$
 by Definition.

$$a_{2n} = a_{2n-1} + a_n$$
 by Definition.

$$a_{2n+1} = a_{2n-1} + 2a_n \equiv a_{2n-1}$$
 by algebra and $2 \equiv 0 \pmod{2}$.

IB
$$a_1 = 1 \equiv 1$$
.
IH $a_{2n-1} \equiv 1$.
IS $a_{2n+1} = a_{2n} + a_n$ by Definition. $a_{2n} = a_{2n-1} + a_n$ by Definition. $a_{2n+1} = a_{2n-1} + 2a_n \equiv a_{2n-1}$ by algebra and $2 \equiv 0 \pmod{2}$. $a_{2n-1} \equiv 1$ by the IH.

IB
$$a_1 = 1 \equiv 1$$
.
IH $a_{2n-1} \equiv 1$.
IS

$$a_{2n+1} = a_{2n} + a_n$$
 by Definition.

$$a_{2n} = a_{2n-1} + a_n$$
 by Definition.

$$a_{2n+1} = a_{2n-1} + 2a_n \equiv a_{2n-1}$$
 by algebra and $2 \equiv 0 \pmod{2}$.

$$a_{2n-1} \equiv 1$$
 by the IH.

Hence
$$a_{2n+1} \equiv a_{2n-1} \equiv 1$$
.

 $(\exists^{\infty} n)[a_n \equiv 0]$

$$(\exists^{\infty} n)[a_n \equiv 0]$$

$$(\exists^{\infty} n)[a_n \equiv 0]$$

Since for all ODD m, $a_m \equiv 1$ we have $a_{2n} = a_{2n-1} + a_n \equiv 1 + a_n$.

$$(\exists^{\infty} n)[a_n \equiv 0]$$

Since for all ODD m, $a_m \equiv 1$ we have

$$a_{2n} = a_{2n-1} + a_n \equiv 1 + a_n.$$

If *n* is odd then we have

$$a_{2n} = a_{2n-1} + a_n \equiv 1 + a_n \equiv 1 + 1 \equiv 0.$$

$$(\exists^{\infty} n)[a_n \equiv 0]$$

Since for all ODD m, $a_m \equiv 1$ we have

$$a_{2n} = a_{2n-1} + a_n \equiv 1 + a_n.$$

If *n* is odd then we have

$$a_{2n} = a_{2n-1} + a_n \equiv 1 + a_n \equiv 1 + 1 \equiv 0.$$

Upshot For all *k*

$$a_{2(2k+1)} = a_{2(2k+1)-1} + a_{2k+1} \equiv 1 + 1 \equiv 0.$$

Thm For all n $a_{n+1} \equiv 0 \lor a_{2n+1} \equiv 0 \lor a_{2n+2} \equiv 0.$

Thm For all n $a_{n+1} \equiv 0 \lor a_{2n+1} \equiv 0 \lor a_{2n+2} \equiv 0$. **Pf**

```
Thm For all n a_{n+1} \equiv 0 \lor a_{2n+1} \equiv 0 \lor a_{2n+2} \equiv 0. Pf
Case 1 \ a_{n+1} \equiv 0. DONE.
```

```
Thm For all n a_{n+1} \equiv 0 \lor a_{2n+1} \equiv 0 \lor a_{2n+2} \equiv 0. Pf Case 1 a_{n+1} \equiv 0. DONE. Case 2 a_{2n+1} \equiv 0. DONE.
```

```
Thm For all n a_{n+1} \equiv 0 \lor a_{2n+1} \equiv 0 \lor a_{2n+2} \equiv 0. Pf

Case 1 a_{n+1} \equiv 0. DONE.

Case 2 a_{2n+1} \equiv 0. DONE.

Case 3 a_{n+1} \equiv 1 and a_{2n+1} \equiv 1.
```

Thm For all n $a_{n+1} \equiv 0 \lor a_{2n+1} \equiv 0 \lor a_{2n+2} \equiv 0$. Pf

Case 1 $a_{n+1} \equiv 0$. DONE.

Case 2 $a_{2n+1} \equiv 0$. DONE.

Case 3 $a_{n+1} \equiv 1$ and $a_{2n+1} \equiv 1$.

$$a_{2n+2}=a_{2n+1}+a_{n+1}\equiv 1+1\equiv 0.$$

Which Proof Did You Like Better?

Vote Which proof did you like better?

Which Proof Did You Like Better?

Vote Which proof did you like better?

1. The proof where we first show $a_m \equiv 1$ for odd m, and then show $a_{2(2k+1)} \equiv 0$.

Which Proof Did You Like Better?

Vote Which proof did you like better?

- 1. The proof where we first show $a_m \equiv 1$ for odd m, and then show $a_{2(2k+1)} \equiv 0$.
- 2. The proof where we showed that, for all n, $a_{n+1} \equiv 0 \lor a_{2n+1} \equiv 0 \lor a_{2n+2} \equiv 0$.

The BEE Sequence Mod 3

|--|

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 3)
1	a_1	1		1
	-	1	I	

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 3)
1	a ₁	1		1
2	$a_2=a_1+a_1$	2		2

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	an	(mod 3)
1	a 1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3=a_2+a_1$	3		0

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 3)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		2
3	$a_3 = a_2 + a_1$	3		0
4	$a_4 = a_3 + a_2$	5		2
	•		'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	an	(mod 3)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		2
3	$a_3 = a_2 + a_1$	3		0
4	$a_4 = a_3 + a_2$	5		2
5	$a_5 = a_4 + a_2$	7		1
	•		'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	an	(mod 3)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		0
4	$a_4 = a_3 + a_2$	5		2
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		1
				·

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 3)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		0
4	$a_4 = a_3 + a_2$	5		2
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		1
7	$a_7 = a_6 + a_3$	13		1
			'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 3)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		2
3	$a_3 = a_2 + a_1$	3		0
4	$a_4 = a_3 + a_2$	5		2
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		1
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		0
	'	1	'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	an	(mod 3)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		0
4	$a_4 = a_3 + a_2$	5		2
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		1
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		0
9	$a_9 = a_8 + a_4$	23		2
	'	'	'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 3)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		0
4	$a_4 = a_3 + a_2$	5		2
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		1
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		0
9	$a_9 = a_8 + a_4$	23		2
10	$a_{10} = a_9 + a_5$	30		0
	•	ļi	ļi.	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 3)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		0
4	$a_4 = a_3 + a_2$	5		2
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		1
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		0
9	$a_9 = a_8 + a_4$	23		2
10	$a_{10} = a_9 + a_5$	30		0
11	$a_{11} = a_{10} + a_5$	37		1

In this section all \equiv are mod 3.

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 3)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		0
4	$a_4 = a_3 + a_2$	5		2
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		1
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		0
9	$a_9 = a_8 + a_4$	23		2
10	$a_{10} = a_9 + a_5$	30		0
11	$a_{11} = a_{10} + a_5$	37		1

Question $(\exists^{\infty} n)[a_n \equiv 0]$?

In this section all \equiv are mod 3.

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	$a_n \pmod{3}$)
1	a_1	1	1	
2	$a_2=a_1+a_1$	2	2	
3	$a_3 = a_2 + a_1$	3	0	
4	$a_4 = a_3 + a_2$	5	2	
5	$a_5 = a_4 + a_2$	7	1	
6	$a_6 = a_5 + a_3$	10	1	
7	$a_7 = a_6 + a_3$	13	1	
8	$a_8 = a_7 + a_4$	18	0	
9	$a_9 = a_8 + a_4$	23	2	
10	$a_{10} = a_9 + a_5$	30	0	
11	$a_{11}=a_{10}+a_5$	37	1	

Question $(\exists^{\infty} n)[a_n \equiv 0]$?

Vote YES, NO, UNKNOWN TO G-K-M?

Lets Try To Spot a Pattern!

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 3)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		2
3	$a_3 = a_2 + a_1$	3		0
4	$a_4 = a_3 + a_2$	5		2
5	$a_5 = a_4 + a_2$	7		1
6	$a_6 = a_5 + a_3$	10		1
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		0
9	$a_9 = a_8 + a_4$	23		2
10	$a_{10} = a_9 + a_5$	30		0
11	$a_{11} = a_{10} + a_5$	37		1

Lets Try To Spot a Pattern!

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	$a_n \pmod{3}$
1	a_1	1	1
2	$a_2=a_1+a_1$	2	2
3	$a_3 = a_2 + a_1$	3	0
4	$a_4 = a_3 + a_2$	5	2
5	$a_5 = a_4 + a_2$	7	1
6	$a_6 = a_5 + a_3$	10	1
7	$a_7 = a_6 + a_3$	13	1
8	$a_8 = a_7 + a_4$	18	0
9	$a_9 = a_8 + a_4$	23	2
10	$a_{10} = a_9 + a_5$	30	0
11	$a_{11} = a_{10} + a_5$	37	1

What do you notice about n, a_n and Mod 3? Discuss.

Lets Try To Spot a Pattern!

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	$a_n \pmod{3}$
	[
1	a_1	1	1
2	$a_2 = a_1 + a_1$	2	2
3	$a_3 = a_2 + a_1$	3	0
4	$a_4 = a_3 + a_2$	5	2
5	$a_5 = a_4 + a_2$	7	1
6	$a_6 = a_5 + a_3$	10	1
7	$a_7 = a_6 + a_3$	13	1
8	$a_8 = a_7 + a_4$	18	0
9	$a_9 = a_8 + a_4$	23	2
10	$a_{10} = a_9 + a_5$	30	0
11	$a_{11} = a_{10} + a_5$	37	1

What do you notice about n, a_n and Mod 3? Discuss. NOTHING!

$$\exists^{\infty} n$$
 with $a_n \equiv 0$

Thm For all *n* $a_{n+1} \equiv 0 \lor a_{2n+1} \equiv 0 \lor a_{2n+2} \equiv 0 \lor a_{2n+3} \equiv 0.$

$$\exists^{\infty} n$$
 with $a_n \equiv 0$

Thm For all n $a_{n+1} \equiv 0 \lor a_{2n+1} \equiv 0 \lor a_{2n+2} \equiv 0 \lor a_{2n+3} \equiv 0.$ **Pf**

Thm For all n $a_{n+1} \equiv 0 \lor a_{2n+1} \equiv 0 \lor a_{2n+2} \equiv 0 \lor a_{2n+3} \equiv 0.$ Pf Case $1 \ a_{n+1} \equiv 0.$ DONE.

Thm For all *n*

$$a_{n+1} \equiv 0 \ \lor \ a_{2n+1} \equiv 0 \ \lor \ a_{2n+2} \equiv 0 \ \lor \ a_{2n+3} \equiv 0.$$
Pf

Case 1 $a_{n+1} \equiv 0$. DONE.

Case 2 $a_{2n+1} \equiv 0$. DONE.

Thm For all *n*

$$a_{n+1} \equiv 0 \ \lor \ a_{2n+1} \equiv 0 \ \lor \ a_{2n+2} \equiv 0 \ \lor \ a_{2n+3} \equiv 0.$$
Pf

Case 1 $a_{n+1} \equiv 0$. DONE.

Case 2 $a_{2n+1} \equiv 0$. DONE.

Case 3 $a_{n+1} \equiv 1$.

Thm For all *n*

$$a_{n+1} \equiv 0 \ \lor \ a_{2n+1} \equiv 0 \ \lor \ a_{2n+2} \equiv 0 \ \lor \ a_{2n+3} \equiv 0.$$
Pf

Case 1 $a_{n+1} \equiv 0$. DONE.

Case 2 $a_{2n+1} \equiv 0$. DONE.

Case 3 $a_{n+1} \equiv 1$.

 $a_{2n+2} \equiv a_{2n+1} + a_{n+1} \equiv a_{2n+1} + 1.$

Thm For all *n*

$$a_{n+1} \equiv 0 \ \lor \ a_{2n+1} \equiv 0 \ \lor \ a_{2n+2} \equiv 0 \ \lor \ a_{2n+3} \equiv 0.$$
Pf

Case 1 $a_{n+1} \equiv 0$. DONE.

Case 2 $a_{2n+1} \equiv 0$. DONE.

Case 3 $a_{n+1} \equiv 1$.

$$a_{2n+2} \equiv a_{2n+1} + a_{n+1} \equiv a_{2n+1} + 1.$$

$$a_{2n+3} \equiv a_{2n+2} + a_{n+1} \equiv a_{2n+1} + 2.$$

Thm For all n

$$a_{n+1} \equiv 0 \ \lor \ a_{2n+1} \equiv 0 \ \lor \ a_{2n+2} \equiv 0 \ \lor \ a_{2n+3} \equiv 0.$$
Pf

Case 1 $a_{n+1} \equiv 0$. DONE.

Case 2 $a_{2n+1} \equiv 0$. DONE.

Case 3 $a_{n+1} \equiv 1$.

$$a_{2n+2} \equiv a_{2n+1} + a_{n+1} \equiv a_{2n+1} + 1.$$

$$a_{2n+3} \equiv a_{2n+2} + a_{n+1} \equiv a_{2n+1} + 2.$$

Case 3a $a_{2n+1} \equiv 1$

Thm For all n

$$a_{n+1} \equiv 0 \ \lor \ a_{2n+1} \equiv 0 \ \lor \ a_{2n+2} \equiv 0 \ \lor \ a_{2n+3} \equiv 0.$$
Pf

Case 1 $a_{n+1} \equiv 0$. DONE.

Case 2 $a_{2n+1} \equiv 0$. DONE.

Case 3 $a_{n+1} \equiv 1$.

$$a_{2n+2} \equiv a_{2n+1} + a_{n+1} \equiv a_{2n+1} + 1.$$

$$a_{2n+3} \equiv a_{2n+2} + a_{n+1} \equiv a_{2n+1} + 2.$$

Case 3a
$$a_{2n+1} \equiv 1$$

$$a_{2n+3} \equiv a_{2n+1} + 2 \equiv 1 + 2 \equiv 0.$$

Thm For all n

$$a_{n+1} \equiv 0 \ \lor \ a_{2n+1} \equiv 0 \ \lor \ a_{2n+2} \equiv 0 \ \lor \ a_{2n+3} \equiv 0.$$
Pf

Case 1 $a_{n+1} \equiv 0$. DONE.

Case 2 $a_{2n+1} \equiv 0$. DONE.

Case 3 $a_{n+1} \equiv 1$.

$$a_{2n+2} \equiv a_{2n+1} + a_{n+1} \equiv a_{2n+1} + 1.$$

$$a_{2n+3} \equiv a_{2n+2} + a_{n+1} \equiv a_{2n+1} + 2.$$

Case 3a $a_{2n+1} \equiv 1$

$$a_{2n+3} \equiv a_{2n+1} + 2 \equiv 1 + 2 \equiv 0.$$

Case 3b
$$a_{2n+1} \equiv 2$$

Thm For all n

$$a_{n+1} \equiv 0 \ \lor \ a_{2n+1} \equiv 0 \ \lor \ a_{2n+2} \equiv 0 \ \lor \ a_{2n+3} \equiv 0.$$
Pf

Case 1
$$a_{n+1} \equiv 0$$
. DONE.

Case 2
$$a_{2n+1} \equiv 0$$
. DONE.

Case 3
$$a_{n+1} \equiv 1$$
.

$$a_{2n+2} \equiv a_{2n+1} + a_{n+1} \equiv a_{2n+1} + 1.$$

$$a_{2n+3} \equiv a_{2n+2} + a_{n+1} \equiv a_{2n+1} + 2.$$

Case 3a
$$a_{2n+1} \equiv 1$$

$$a_{2n+3} \equiv a_{2n+1} + 2 \equiv 1 + 2 \equiv 0.$$

Case 3b
$$a_{2n+1} \equiv 2$$

$$a_{2n+2} \equiv a_{2n+1} + 1 \equiv 2 + 1 \equiv 0.$$

The BEE Sequence Mod 4

|--|

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 4)
1	a_1	1		1
_	a ₁	_		1

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 4)
1	a ₁	1		1
2	$a_2 = a_1 + a_1$	2		2
	•		'	·

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 4)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
	•			· ·

п	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	an	(mod 4)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		1
	•		'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	an	(mod 4)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		3
	•		!	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	an	(mod 4)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		3
6	$a_6 = a_5 + a_3$	10		2
			'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	an	(mod 4)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		3
6	$a_6 = a_5 + a_3$	10		2
7	$a_7 = a_6 + a_3$	13		1
	•	'	'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 4)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		3
6	$a_6 = a_5 + a_3$	10		2
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		2
	•		'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 4)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		3
6	$a_6 = a_5 + a_3$	10		2
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		2
9	$a_9 = a_8 + a_4$	23		3
	'	'		·

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 4)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		3
6	$a_6 = a_5 + a_3$	10		2
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		2
9	$a_9 = a_8 + a_4$	23		3
10	$a_{10} = a_9 + a_5$	30		2
	•			'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 4)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		3
6	$a_6 = a_5 + a_3$	10		2
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		2
9	$a_9 = a_8 + a_4$	23		3
10	$a_{10} = a_9 + a_5$	30		2
11	$a_{11} = a_{10} + a_5$	37		1

In this section all \equiv are mod 4.

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 4)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		3
6	$a_6 = a_5 + a_3$	10		2
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		2
9	$a_9 = a_8 + a_4$	23		3
10	$a_{10} = a_9 + a_5$	30		2
11	$a_{11} = a_{10} + a_5$	37		1

Question $(\exists^{\infty} n)[a_n \equiv 0]$?

In this section all \equiv are mod 4.

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	an	(mod 4)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		1
5	$a_5 = a_4 + a_2$	7		3
6	$a_6 = a_5 + a_3$	10		2
7	$a_7 = a_6 + a_3$	13		1
8	$a_8 = a_7 + a_4$	18		2
9	$a_9 = a_8 + a_4$	23		3
10	$a_{10} = a_9 + a_5$	30		2
11	$a_{11} = a_{10} + a_5$	37		1

Question $(\exists^{\infty} n)[a_n \equiv 0]$?

Vote YES, NO, UNKNOWN TO G-K-M?

1. **Emily** wrote a program that checked and found the following: For all $1 \le n \le 10^6$, $a_n \ne 0 \pmod{4}$.

- 1. **Emily** wrote a program that checked and found the following: For all $1 \le n \le 10^6$, $a_n \ne 0 \pmod{4}$.
- 2. **Erik** proved that this was true and emailed Bill a sketch. The proof is by induction and **could** be presented to you, but is complicated so I will probably skip it.

- 1. **Emily** wrote a program that checked and found the following: For all $1 \le n \le 10^6$, $a_n \ne 0 \pmod{4}$.
- 2. **Erik** proved that this was true and emailed Bill a sketch. The proof is by induction and **could** be presented to you, but is complicated so I will probably skip it.
- 3. Bill wrote it up.

The BEE Sequence Mod 5

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 5)

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 5)
1	a ₁	1		1

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 5)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
	'	'		,

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 5)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
	'	'		

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 5)
1	a ₁	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		0
	ı	II	'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 5)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		0
5	$a_5 = a_4 + a_2$	7		2
	•			·

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 5)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		0
5	$a_5 = a_4 + a_2$	7		2
6	$a_6 = a_5 + a_3$	10		0
		ļi	'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 5)
1	a ₁	1		1
2	$a_2=a_1+a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		0
5	$a_5 = a_4 + a_2$	7		2
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		3
	'	1		'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 5)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		0
5	$a_5 = a_4 + a_2$	7		2
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		3
8	$a_8 = a_7 + a_4$	18		3
	•			,

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 5)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		0
5	$a_5 = a_4 + a_2$	7		2
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		3
8	$a_8 = a_7 + a_4$	18		3
9	$a_9 = a_8 + a_4$	23		3
i	•			

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 5)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		0
5	$a_5 = a_4 + a_2$	7		2
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		3
8	$a_8 = a_7 + a_4$	18		3
9	$a_9 = a_8 + a_4$	23		3
10	$a_{10} = a_9 + a_5$	30		0
1				

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 5)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		0
5	$a_5 = a_4 + a_2$	7		2
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		3
8	$a_8 = a_7 + a_4$	18		3
9	$a_9 = a_8 + a_4$	23		3
10	$a_{10} = a_9 + a_5$	30		0
11	$a_{11} = a_{10} + a_5$	37		2

In this section all \equiv are mod 5.

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 5)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		0
5	$a_5 = a_4 + a_2$	7		2
6	$a_6 = a_5 + a_3$	10		0
7	$a_7 = a_6 + a_3$	13		3
8	$a_8 = a_7 + a_4$	18		3
9	$a_9 = a_8 + a_4$	23		3
10	$a_{10} = a_9 + a_5$	30		0
11	$a_{11} = a_{10} + a_5$	37		2

No pattern here. But $a_4 \equiv a_6 \equiv 0$.

We will use $a_6 \equiv 0$ to get some larger n with $a_n \equiv 0$.

We will use $a_6 \equiv 0$ to get some larger n with $a_n \equiv 0$. a_6 is used for both a_{12} and a_{13} .

We will use $a_6 \equiv 0$ to get some larger n with $a_n \equiv 0$.

 a_6 is used for both a_{12} and a_{13} .

$$a_{12}=a_{11}+a_6\equiv a_{11}$$

We will use $a_6 \equiv 0$ to get some larger n with $a_n \equiv 0$.

 a_6 is used for both a_{12} and a_{13} .

$$a_{12} = a_{11} + a_6 \equiv a_{11}$$

$$a_{13}=a_{12}+a_6\equiv a_{12}.$$

We will use $a_6 \equiv 0$ to get some larger n with $a_n \equiv 0$.

 a_6 is used for both a_{12} and a_{13} .

$$a_{12} = a_{11} + a_6 \equiv a_{11}$$

$$a_{13}=a_{12}+a_6\equiv a_{12}.$$

So we get

We will use $a_6 \equiv 0$ to get some larger n with $a_n \equiv 0$.

 a_6 is used for both a_{12} and a_{13} .

$$a_{12} = a_{11} + a_6 \equiv a_{11}$$

$$a_{13}=a_{12}+a_6\equiv a_{12}$$
.

So we get

$$a_{11} \equiv a_{12} \equiv a_{13}$$
.

We will use $a_6 \equiv 0$ to get some larger n with $a_n \equiv 0$.

 a_6 is used for both a_{12} and a_{13} .

$$a_{12} = a_{11} + a_6 \equiv a_{11}$$

$$a_{13}=a_{12}+a_6\equiv a_{12}$$
.

So we get

$$a_{11} \equiv a_{12} \equiv a_{13}$$
.

Lets use that!

Let
$$a_{11} \equiv a_{12} \equiv a_{13} \equiv r$$

Let $a_{11}\equiv a_{12}\equiv a_{13}\equiv r$ The sequence uses a_{11} for a_{22} and a_{23}

Let $a_{11} \equiv a_{12} \equiv a_{13} \equiv r$ The sequence uses a_{11} for a_{22} and a_{23} The sequence uses a_{12} for a_{24} and a_{25}

Let $a_{11} \equiv a_{12} \equiv a_{13} \equiv r$ The sequence uses a_{11} for a_{22} and a_{23} The sequence uses a_{12} for a_{24} and a_{25} The sequence uses a_{13} for a_{26} and a_{27}

Let $a_{11} \equiv a_{12} \equiv a_{13} \equiv r$ The sequence uses a_{11} for a_{22} and a_{23} The sequence uses a_{12} for a_{24} and a_{25} The sequence uses a_{13} for a_{26} and a_{27} $a_{22} = a_{21} + a_{11} \equiv a_{21} + r$

Let
$$a_{11} \equiv a_{12} \equiv a_{13} \equiv r$$

The sequence uses a_{11} for a_{22} and a_{23}
The sequence uses a_{12} for a_{24} and a_{25}
The sequence uses a_{13} for a_{26} and a_{27}
 $a_{22} = a_{21} + a_{11} \equiv a_{21} + r$
 $a_{23} = a_{22} + a_{11} \equiv a_{21} + r + a_{11} \equiv a_{21} + 2r$

Let
$$a_{11} \equiv a_{12} \equiv a_{13} \equiv r$$

The sequence uses a_{11} for a_{22} and a_{23}
The sequence uses a_{12} for a_{24} and a_{25}
The sequence uses a_{13} for a_{26} and a_{27}
 $a_{22} = a_{21} + a_{11} \equiv a_{21} + r$
 $a_{23} = a_{22} + a_{11} \equiv a_{21} + r + a_{11} \equiv a_{21} + 2r$
 $a_{24} = a_{23} + a_{12} \equiv a_{21} + 2r + a_{12} \equiv a_{21} + 3r$

Let $a_{11} \equiv a_{12} \equiv a_{13} \equiv r$ The sequence uses a_{11} for a_{22} and a_{23} The sequence uses a_{12} for a_{24} and a_{25} The sequence uses a_{13} for a_{26} and a_{27} $a_{22} = a_{21} + a_{11} \equiv a_{21} + r$ $a_{23} = a_{22} + a_{11} \equiv a_{21} + r + a_{11} \equiv a_{21} + 2r$ $a_{24} = a_{23} + a_{12} \equiv a_{21} + 2r + a_{12} \equiv a_{21} + 3r$ $a_{25} = a_{24} + a_{12} \equiv a_{21} + 3r + a_{12} \equiv a_{21} + 4r$

Let
$$a_{11} \equiv a_{12} \equiv a_{13} \equiv r$$

The sequence uses a_{11} for a_{22} and a_{23}
The sequence uses a_{12} for a_{24} and a_{25}
The sequence uses a_{13} for a_{26} and a_{27}
 $a_{22} = a_{21} + a_{11} \equiv a_{21} + r$
 $a_{23} = a_{22} + a_{11} \equiv a_{21} + r + a_{11} \equiv a_{21} + 2r$
 $a_{24} = a_{23} + a_{12} \equiv a_{21} + 2r + a_{12} \equiv a_{21} + 3r$
 $a_{25} = a_{24} + a_{12} \equiv a_{21} + 3r + a_{12} \equiv a_{21} + 4r$
Continued Next Slide.

Let
$$a_{11} \equiv a_{12} \equiv a_{13} \equiv r$$

Let
$$a_{11} \equiv a_{12} \equiv a_{13} \equiv r$$

 $a_{22} = a_{21} + a_{11} \equiv a_{21} + r$

Let
$$a_{11} \equiv a_{12} \equiv a_{13} \equiv r$$

 $a_{22} = a_{21} + a_{11} \equiv a_{21} + r$
 $a_{23} = a_{22} + a_{11} \equiv a_{21} + 2r$

Let
$$a_{11} \equiv a_{12} \equiv a_{13} \equiv r$$

 $a_{22} = a_{21} + a_{11} \equiv a_{21} + r$
 $a_{23} = a_{22} + a_{11} \equiv a_{21} + 2r$
 $a_{24} = a_{23} + a_{12} \equiv a_{21} + 3r$

Let
$$a_{11} \equiv a_{12} \equiv a_{13} \equiv r$$

 $a_{22} = a_{21} + a_{11} \equiv a_{21} + r$
 $a_{23} = a_{22} + a_{11} \equiv a_{21} + 2r$
 $a_{24} = a_{23} + a_{12} \equiv a_{21} + 3r$
 $a_{25} = a_{24} + a_{12} \equiv a_{21} + 4r$

Lets Use $a_{11} \equiv a_{12} \equiv a_{13}$ (cont)

Let
$$a_{11} \equiv a_{12} \equiv a_{13} \equiv r$$

 $a_{22} = a_{21} + a_{11} \equiv a_{21} + r$
 $a_{23} = a_{22} + a_{11} \equiv a_{21} + 2r$
 $a_{24} = a_{23} + a_{12} \equiv a_{21} + 3r$
 $a_{25} = a_{24} + a_{12} \equiv a_{21} + 4r$
Case $0 \ r \equiv 0$. DONE, $a_{11} \equiv 0$. Later cases assume $r \not\equiv 0$.

Lets Use $a_{11} \equiv a_{12} \equiv a_{13}$ (cont)

```
Let a_{11} \equiv a_{12} \equiv a_{13} \equiv r

a_{22} = a_{21} + a_{11} \equiv a_{21} + r

a_{23} = a_{22} + a_{11} \equiv a_{21} + 2r

a_{24} = a_{23} + a_{12} \equiv a_{21} + 3r

a_{25} = a_{24} + a_{12} \equiv a_{21} + 4r

Case 0 r \equiv 0. DONE, a_{11} \equiv 0. Later cases assume r \not\equiv 0.

Case 1 a_{21} \equiv 0. DONE. Later cases assume a_{21} \not\equiv 0.
```

Lets Use $a_{11} \equiv a_{12} \equiv a_{13}$ (cont)

Let
$$a_{11} \equiv a_{12} \equiv a_{13} \equiv r$$

 $a_{22} = a_{21} + a_{11} \equiv a_{21} + r$
 $a_{23} = a_{22} + a_{11} \equiv a_{21} + 2r$
 $a_{24} = a_{23} + a_{12} \equiv a_{21} + 3r$
 $a_{25} = a_{24} + a_{12} \equiv a_{21} + 4r$
Case 0 $r \equiv 0$. DONE, $a_{11} \equiv 0$. Later cases assume $r \not\equiv 0$.
Case 1 $a_{21} \equiv 0$. DONE. Later cases assume $a_{21} \not\equiv 0$.
Case 2 Whats left.
One of $a_{21} + r$, $a_{21} + 2r$, $a_{21} + 3r$, $a_{21} + 4r$ is $\equiv 0$.

We prove $(\exists^{\infty} n)[a_n \equiv 0]$.

We prove $(\exists^{\infty} n)[a_n \equiv 0]$.

The proof is by induction.

We prove $(\exists^{\infty} n)[a_n \equiv 0]$.

The proof is by induction. Finally an induction proof!

We prove $(\exists^{\infty} n)[a_n \equiv 0]$.

The proof is by induction. Finally an induction proof!

Thm
$$(\forall n)(\exists i_1 < \cdots < i_n)[a_{i_1} \equiv \cdots \equiv a_{i_n} \equiv 0].$$

We prove $(\exists^{\infty} n)[a_n \equiv 0]$.

The proof is by induction. Finally an induction proof!

Thm $(\forall n)(\exists i_1 < \cdots < i_n)[a_{i_1} \equiv \cdots \equiv a_{i_n} \equiv 0].$

IB For n = 1 take $i_1 = 6$. Note that $a_6 \equiv 0$.

We prove $(\exists^{\infty} n)[a_n \equiv 0]$.

The proof is by induction. Finally an induction proof!

Thm
$$(\forall n)(\exists i_1 < \cdots < i_n)[a_{i_1} \equiv \cdots \equiv a_{i_n} \equiv 0].$$

IB For n = 1 take $i_1 = 6$. Note that $a_6 \equiv 0$.

IH
$$a_{i_1} \equiv \cdots \equiv a_{i_n} \equiv 0$$
.

We prove $(\exists^{\infty} n)[a_n \equiv 0]$.

The proof is by induction. Finally an induction proof!

Thm
$$(\forall n)(\exists i_1 < \cdots < i_n)[a_{i_1} \equiv \cdots \equiv a_{i_n} \equiv 0].$$

IB For n = 1 take $i_1 = 6$. Note that $a_6 \equiv 0$.

IH $a_{i_1} \equiv \cdots \equiv a_{i_n} \equiv 0$.

IS Let $i_n = m$. We use $a_m \equiv 0$ to show $(\exists m' > m)[a_{m'} \equiv 0]$.

We prove $(\exists^{\infty} n)[a_n \equiv 0]$.

The proof is by induction. Finally an induction proof!

Thm
$$(\forall n)(\exists i_1 < \cdots < i_n)[a_{i_1} \equiv \cdots \equiv a_{i_n} \equiv 0].$$

IB For n = 1 take $i_1 = 6$. Note that $a_6 \equiv 0$.

IH $a_{i_1} \equiv \cdots \equiv a_{i_n} \equiv 0$.

IS Let $i_n = m$. We use $a_m \equiv 0$ to show $(\exists m' > m)[a_{m'} \equiv 0]$.

Continued on Next Slide.

We will use $a_m \equiv 0$ to get some larger m' with $a_{m'} \equiv 0$.

We will use $a_m \equiv 0$ to get some larger m' with $a_{m'} \equiv 0$. a_m is used for both a_{2m} and a_{2m+1} .

We will use $a_m \equiv 0$ to get some larger m' with $a_{m'} \equiv 0$. a_m is used for both a_{2m} and a_{2m+1} . $a_{2m} = a_{2m-1} + a_m \equiv a_{2m-1}$

We will use $a_m \equiv 0$ to get some larger m' with $a_{m'} \equiv 0$.

 a_m is used for both a_{2m} and a_{2m+1} .

$$a_{2m} = a_{2m-1} + a_m \equiv a_{2m-1}$$

$$a_{2m+1} = a_{2m} + a_m \equiv a_{2m-1}$$
.

We will use $a_m\equiv 0$ to get some larger m' with $a_{m'}\equiv 0$. a_m is used for both a_{2m} and a_{2m+1} . $a_{2m}=a_{2m-1}+a_m\equiv a_{2m-1}$ $a_{2m+1}=a_{2m}+a_m\equiv a_{2m-1}$. So we get

We will use $a_m \equiv 0$ to get some larger m' with $a_{m'} \equiv 0$.

 a_m is used for both a_{2m} and a_{2m+1} .

$$a_{2m} = a_{2m-1} + a_m \equiv a_{2m-1}$$

$$a_{2m+1} = a_{2m} + a_m \equiv a_{2m-1}$$
.

So we get

$$a_{2m-1}\equiv a_{2m}\equiv a_{2m+1}.$$

We will use $a_m \equiv 0$ to get some larger m' with $a_{m'} \equiv 0$.

 a_m is used for both a_{2m} and a_{2m+1} .

$$a_{2m} = a_{2m-1} + a_m \equiv a_{2m-1}$$

$$a_{2m+1} = a_{2m} + a_m \equiv a_{2m-1}$$
.

So we get

$$a_{2m-1}\equiv a_{2m}\equiv a_{2m+1}.$$

Lets use that!

Let
$$a_{2m-1} \equiv a_{2m} \equiv a_{2m+1} \equiv r$$

Let $a_{2m-1}\equiv a_{2m}\equiv a_{2m+1}\equiv r$ The sequence uses a_{2m-1} for a_{4m-2} and a_{4m-1}

Let $a_{2m-1}\equiv a_{2m}\equiv a_{2m+1}\equiv r$ The sequence uses a_{2m-1} for a_{4m-2} and a_{4m-1} The sequence uses a_{2m} for a_{4m} and a_{4m+1}

Let $a_{2m-1} \equiv a_{2m} \equiv a_{2m+1} \equiv r$ The sequence uses a_{2m-1} for a_{4m-2} and a_{4m-1} The sequence uses a_{2m} for a_{4m} and a_{4m+1} The sequence uses a_{2m+1} for a_{4m+2} and a_{4m+3}

Let $a_{2m-1} \equiv a_{2m} \equiv a_{2m+1} \equiv r$ The sequence uses a_{2m-1} for a_{4m-2} and a_{4m-1} The sequence uses a_{2m} for a_{4m} and a_{4m+1} The sequence uses a_{2m+1} for a_{4m+2} and a_{4m+3} $a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$

Let
$$a_{2m-1} \equiv a_{2m} \equiv a_{2m+1} \equiv r$$

The sequence uses a_{2m-1} for a_{4m-2} and a_{4m-1}
The sequence uses a_{2m} for a_{4m} and a_{4m+1}
The sequence uses a_{2m+1} for a_{4m+2} and a_{4m+3}
 $a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$
 $a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$

Let
$$a_{2m-1} \equiv a_{2m} \equiv a_{2m+1} \equiv r$$

The sequence uses a_{2m-1} for a_{4m-2} and a_{4m-1}
The sequence uses a_{2m} for a_{4m} and a_{4m+1}
The sequence uses a_{2m+1} for a_{4m+2} and a_{4m+3}
 $a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$
 $a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$
 $a_{4m} = a_{4m-1} + a_{2m} \equiv a_{4m-3} + 3r$

Let
$$a_{2m-1} \equiv a_{2m} \equiv a_{2m+1} \equiv r$$

The sequence uses a_{2m-1} for a_{4m-2} and a_{4m-1}
The sequence uses a_{2m} for a_{4m} and a_{4m+1}
The sequence uses a_{2m+1} for a_{4m+2} and a_{4m+3}
 $a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$
 $a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$
 $a_{4m} = a_{4m-1} + a_{2m} \equiv a_{4m-3} + 3r$
 $a_{4m+1} = a_{4m} + a_{2m} \equiv a_{4m-3} + 4r$

Let
$$a_{2m-1} \equiv a_{2m} \equiv a_{2m+1} \equiv r$$

The sequence uses a_{2m-1} for a_{4m-2} and a_{4m-1}
The sequence uses a_{2m} for a_{4m} and a_{4m+1}
The sequence uses a_{2m+1} for a_{4m+2} and a_{4m+3}
 $a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$
 $a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$
 $a_{4m} = a_{4m-1} + a_{2m} \equiv a_{4m-3} + 3r$
 $a_{4m+1} = a_{4m} + a_{2m} \equiv a_{4m-3} + 4r$
Continued Next Slide.

$$a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$$

$$a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$$

 $a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$

$$a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$$

 $a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$
 $a_{4m} = a_{4m-1} + a_{2m} \equiv a_{4m-3} + 3r$

$$a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$$

$$a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$$

$$a_{4m} = a_{4m-1} + a_{2m} \equiv a_{4m-3} + 3r$$

$$a_{4m+1} = a_{4m} + a_{2m} \equiv a_{4m-3} + 4r$$

$$a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$$
 $a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$
 $a_{4m} = a_{4m-1} + a_{2m} \equiv a_{4m-3} + 3r$
 $a_{4m+1} = a_{4m} + a_{2m} \equiv a_{4m-3} + 4r$
Case 0 $r \equiv 0$. DONE, $a_{2m-1} \equiv 0$. Later cases assume $r \not\equiv 0$.

$$a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$$
 $a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$
 $a_{4m} = a_{4m-1} + a_{2m} \equiv a_{4m-3} + 3r$
 $a_{4m+1} = a_{4m} + a_{2m} \equiv a_{4m-3} + 4r$
Case 0 $r \equiv 0$. DONE, $a_{2m-1} \equiv 0$. Later cases assume $r \not\equiv 0$.
Case 1 $a_{4m-3} \equiv 0$. DONE. Later cases assume $a_{4m-3} \not\equiv 0$.

$$a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$$

$$a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$$

$$a_{4m} = a_{4m-1} + a_{2m} \equiv a_{4m-3} + 3r$$

$$a_{4m+1} = a_{4m} + a_{2m} \equiv a_{4m-3} + 4r$$

Case 0 $r \equiv 0$. DONE, $a_{2m-1} \equiv 0$. Later cases assume $r \not\equiv 0$.

Case 1 $a_{4m-3} \equiv 0$. DONE. Later cases assume $a_{4m-3} \not\equiv 0$.

Case 2 Whats left.

One of $a_{4m-3} + r$, $a_{4m-3} + 2r$, $a_{4m-3} + 3r$, $a_{4m-3} + 4r$ is $\equiv 0$.

$$a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$$

$$a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$$

$$a_{4m} = a_{4m-1} + a_{2m} \equiv a_{4m-3} + 3r$$

$$a_{4m+1} = a_{4m} + a_{2m} \equiv a_{4m-3} + 4r$$

Case 0 $r \equiv 0$. DONE, $a_{2m-1} \equiv 0$. Later cases assume $r \not\equiv 0$.

Case 1 $a_{4m-3} \equiv 0$. DONE. Later cases assume $a_{4m-3} \not\equiv 0$.

Case 2 Whats left.

One of $a_{4m-3} + r$, $a_{4m-3} + 2r$, $a_{4m-3} + 3r$, $a_{4m-3} + 4r$ is $\equiv 0$. So we have an m' > m such that $a_{m'} \equiv 0$.

The BEE Sequence Mod 7

	n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 7)
--	---	---	----------------	----------------	---------

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 7)
1	a ₁	1		1

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 7)
1	a ₁	1		1
2	$a_2=a_1+a_1$	2		2
	'	'		,

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 7)
1	a ₁	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 7)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		5
	'		!	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 7)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		5
5	$a_5 = a_4 + a_2$	7		0
	•	!	'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	an	(mod 7)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		5
5	$a_5 = a_4 + a_2$	7		0
6	$a_6 = a_5 + a_3$	10		3
	'		'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 7)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		5
5	$a_5 = a_4 + a_2$	7		0
6	$a_6 = a_5 + a_3$	10		3
7	$a_7 = a_6 + a_3$	13		6
	'	,	,	,

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	$a_n \pmod{7}$
1	a_1	1	1
2	$a_2 = a_1 + a_1$	2	2
3	$a_3 = a_2 + a_1$	3	3
4	$a_4 = a_3 + a_2$	5	5
5	$a_5 = a_4 + a_2$	7	0
6	$a_6 = a_5 + a_3$	10	3
7	$a_7 = a_6 + a_3$	13	6
8	$a_8 = a_7 + a_4$	18	4
			'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	$a_n \pmod{7}$
1	a_1	1	1
2	$a_2 = a_1 + a_1$	2	2
3	$a_3 = a_2 + a_1$	3	3
4	$a_4 = a_3 + a_2$	5	5
5	$a_5 = a_4 + a_2$	7	0
6	$a_6 = a_5 + a_3$	10	3
7	$a_7 = a_6 + a_3$	13	6
8	$a_8 = a_7 + a_4$	18	4
9	$a_9 = a_8 + a_4$	23	2
		'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 7)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		5
5	$a_5 = a_4 + a_2$	7		0
6	$a_6 = a_5 + a_3$	10		3
7	$a_7 = a_6 + a_3$	13		6
8	$a_8 = a_7 + a_4$	18		4
9	$a_9 = a_8 + a_4$	23		2
10	$a_{10} = a_9 + a_5$	30		2
	•			'

In this section all \equiv are mod 7

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	$a_n \pmod{7}$
1	a_1	1	1
2	$a_2 = a_1 + a_1$	2	2
3	$a_3 = a_2 + a_1$	3	3
4	$a_4 = a_3 + a_2$	5	5
5	$a_5 = a_4 + a_2$	7	0
6	$a_6 = a_5 + a_3$	10	3
7	$a_7 = a_6 + a_3$	13	6
8	$a_8 = a_7 + a_4$	18	4
9	$a_9 = a_8 + a_4$	23	2
10	$a_{10} = a_9 + a_5$	30	2
11	$a_{11} = a_{10} + a_5$	37	2

No pattern here. But $a_5 \equiv 0 \pmod{7}$.

We will use $a_m \equiv 0$ to get some larger m' with $a_{m'} \equiv 0$.

We will use $a_m \equiv 0$ to get some larger m' with $a_{m'} \equiv 0$. a_m is used for both a_{2m} and a_{2m+1} .

We will use $a_m \equiv 0$ to get some larger m' with $a_{m'} \equiv 0$. a_m is used for both a_{2m} and a_{2m+1} . $a_{2m} = a_{2m-1} + a_m \equiv a_{2m-1}$

We will use $a_m \equiv 0$ to get some larger m' with $a_{m'} \equiv 0$.

 a_m is used for both a_{2m} and a_{2m+1} .

$$a_{2m} = a_{2m-1} + a_m \equiv a_{2m-1}$$

$$a_{2m+1} = a_{2m} + a_m \equiv a_{2m-1}$$

We will use $a_m \equiv 0$ to get some larger m' with $a_{m'} \equiv 0$.

 a_m is used for both a_{2m} and a_{2m+1} .

$$a_{2m} = a_{2m-1} + a_m \equiv a_{2m-1}$$

$$a_{2m+1} = a_{2m} + a_m \equiv a_{2m-1}$$

So we get

$$a_{2m-1}\equiv a_{2m}\equiv a_{2m+1}.$$

We will use $a_m \equiv 0$ to get some larger m' with $a_{m'} \equiv 0$.

 a_m is used for both a_{2m} and a_{2m+1} .

$$a_{2m} = a_{2m-1} + a_m \equiv a_{2m-1}$$

$$a_{2m+1} = a_{2m} + a_m \equiv a_{2m-1}$$

So we get

$$a_{2m-1}\equiv a_{2m}\equiv a_{2m+1}.$$

Lets use that!

WORK ON THIS IN GROUPS.

Let
$$a_{2m-1} \equiv a_{2m} \equiv a_{2m+1} \equiv r$$

Let
$$a_{2m-1} \equiv a_{2m} \equiv a_{2m+1} \equiv r$$

 $a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$

Let
$$a_{2m-1} \equiv a_{2m} \equiv a_{2m+1} \equiv r$$

 $a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$
 $a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$

Let
$$a_{2m-1} \equiv a_{2m} \equiv a_{2m+1} \equiv r$$

 $a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$
 $a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$
 $a_{4m} = a_{4m-1} + a_{2m} \equiv a_{4m-3} + 3r$

Let
$$a_{2m-1} \equiv a_{2m} \equiv a_{2m+1} \equiv r$$

 $a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$
 $a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$
 $a_{4m} = a_{4m-1} + a_{2m} \equiv a_{4m-3} + 3r$
 $a_{4m+1} = a_{4m} + a_{2m} \equiv a_{4m-3} + 4r$

Let
$$a_{2m-1} \equiv a_{2m} \equiv a_{2m+1} \equiv r$$

 $a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$
 $a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$
 $a_{4m} = a_{4m-1} + a_{2m} \equiv a_{4m-3} + 3r$
 $a_{4m+1} = a_{4m} + a_{2m} \equiv a_{4m-3} + 4r$
 $a_{4m+2} = a_{4m+1} + a_{2m+1} \equiv a_{4m-3} + 5r$

Let
$$a_{2m-1} \equiv a_{2m} \equiv a_{2m+1} \equiv r$$

 $a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$
 $a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$
 $a_{4m} = a_{4m-1} + a_{2m} \equiv a_{4m-3} + 3r$
 $a_{4m+1} = a_{4m} + a_{2m} \equiv a_{4m-3} + 4r$
 $a_{4m+2} = a_{4m+1} + a_{2m+1} \equiv a_{4m-3} + 5r$
 $a_{4m+3} = a_{4m+2} + a_{2m+1} \equiv a_{4m-3} + 6r$

Let
$$a_{2m-1} \equiv a_{2m} \equiv a_{2m+1} \equiv r$$

$$a_{4m-2} = a_{4m-3} + a_{2m-1} \equiv a_{4m-3} + r$$

$$a_{4m-1} = a_{4m-2} + a_{2m-1} \equiv a_{4m-3} + 2r$$

$$a_{4m} = a_{4m-1} + a_{2m} \equiv a_{4m-3} + 3r$$

$$a_{4m+1} = a_{4m} + a_{2m} \equiv a_{4m-3} + 4r$$

$$a_{4m+2} = a_{4m+1} + a_{2m+1} \equiv a_{4m-3} + 5r$$

$$a_{4m+3} = a_{4m+2} + a_{2m+1} \equiv a_{4m-3} + 6r$$
Since have $\{r, 2r, 3r, 4r, 5r, 6r\}$ proof is similar to Mod 5.

The BEE Sequence Mod 9

(We skip mod 8 since mod 4 didn't work). In this section all \equiv are mod 9.

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 9)
		•		

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 9)
1	a_1	1		1
	-		ı	

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	a _n	a _n	(mod 9)
1	a_1	1		1
2	$a_2=a_1+a_1$	2		2
İ	'			

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 9)
1	a ₁	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3=a_2+a_1$	3		3
	, , , ,		I	

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	an	(mod 9)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		5
	1	<u>I</u>	!	

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 9)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		5
5	$a_5 = a_4 + a_2$	7		7
	•	'	'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	$a_n \pmod{9}$
1	a_1	1	1
2	$a_2 = a_1 + a_1$	2	2
3	$a_3 = a_2 + a_1$	3	3
4	$a_4 = a_3 + a_2$	5	5
5	$a_5 = a_4 + a_2$	7	7
6	$a_6 = a_5 + a_3$	10	1
	•	'	1

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	$a_n \pmod{9}$
1	a_1	1	1
2	$a_2 = a_1 + a_1$	2	2
3	$a_3 = a_2 + a_1$	3	3
4	$a_4 = a_3 + a_2$	5	5
5	$a_5 = a_4 + a_2$	7	7
6	$a_6 = a_5 + a_3$	10	1
7	$a_7 = a_6 + a_3$	13	4
	•	'	

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	$a_n \pmod{9}$
1	a_1	1	1
2	$a_2 = a_1 + a_1$	2	2
3	$a_3 = a_2 + a_1$	3	3
4	$a_4 = a_3 + a_2$	5	5
5	$a_5 = a_4 + a_2$	7	7
6	$a_6 = a_5 + a_3$	10	1
7	$a_7 = a_6 + a_3$	13	4
8	$a_8 = a_7 + a_4$	18	0
	1	'	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	a _n	(mod 9)
1	a_1	1		1
2	$a_2 = a_1 + a_1$	2		2
3	$a_3 = a_2 + a_1$	3		3
4	$a_4 = a_3 + a_2$	5		5
5	$a_5 = a_4 + a_2$	7		7
6	$a_6 = a_5 + a_3$	10		1
7	$a_7 = a_6 + a_3$	13		4
8	$a_8 = a_7 + a_4$	18		0
9	$a_9 = a_8 + a_4$	23		5
	'	'	•	'

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	$a_n \pmod{9}$
1	a_1	1	1
2	$a_2=a_1+a_1$	2	2
3	$a_3 = a_2 + a_1$	3	3
4	$a_4 = a_3 + a_2$	5	5
5	$a_5 = a_4 + a_2$	7	7
6	$a_6 = a_5 + a_3$	10	1
7	$a_7 = a_6 + a_3$	13	4
8	$a_8 = a_7 + a_4$	18	0
9	$a_9 = a_8 + a_4$	23	5
10	$a_{10} = a_9 + a_5$	30	3
i	•	'	•

п	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	$a_n \pmod{9}$
1	a_1	1	1
2	$a_2=a_1+a_1$	2	2
3	$a_3 = a_2 + a_1$	3	3
4	$a_4 = a_3 + a_2$	5	5
5	$a_5 = a_4 + a_2$	7	7
6	$a_6 = a_5 + a_3$	10	1
7	$a_7 = a_6 + a_3$	13	4
8	$a_8 = a_7 + a_4$	18	0
9	$a_9 = a_8 + a_4$	23	5
10	$a_{10} = a_9 + a_5$	30	3
11	$a_{11} = a_{10} + a_5$	37	1

(We skip mod 8 since mod 4 didn't work). In this section all \equiv are mod 9.

n	$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$	an	$a_n \pmod{9}$
1	a_1	1	1
2	$a_2 = a_1 + a_1$	2	2
3	$a_3 = a_2 + a_1$	3	3
4	$a_4 = a_3 + a_2$	5	5
5	$a_5 = a_4 + a_2$	7	7
6	$a_6 = a_5 + a_3$	10	1
7	$a_7 = a_6 + a_3$	13	4
8	$a_8 = a_7 + a_4$	18	0
9	$a_9 = a_8 + a_4$	23	5
10	$a_{10} = a_9 + a_5$	30	3
11	$a_{11} = a_{10} + a_5$	37	1

No pattern here. But $a_8 \equiv 0 \pmod{9}$.

Lets Try Same Approach as Mod 5

 $\mathsf{AII} \equiv \mathsf{are} \; \mathsf{mod} \; 9$

Lets Try Same Approach as Mod 5

 $AII \equiv are \mod 9$

We get the same equation:

$$a_{2m-1}\equiv a_{2m}\equiv a_{2m+1}.$$

Lets Try Same Approach as Mod 5

 $AII \equiv are \mod 9$

We get the same equation:

$$a_{2m-1} \equiv a_{2m} \equiv a_{2m+1}.$$

WORK IN GROUPS TO GET SOME $a_{m'} \equiv 0$.

I suspect you did not succeed. Vote

I suspect you did not succeed. Vote

1. $(\exists^{\infty} n)[a_n \equiv 0]$ and this has been proven (with a new technique I have not shown yet).

I suspect you did not succeed. Vote

- 1. $(\exists^{\infty} n)[a_n \equiv 0]$ and this has been proven (with a new technique I have not shown yet).
- 2. There is NOT an infinite number of a_n with $a_n \equiv 0$ and this has been proven.

I suspect you did not succeed. Vote

- 1. $(\exists^{\infty} n)[a_n \equiv 0]$ and this has been proven (with a new technique I have not shown yet).
- 2. There is NOT an infinite number of a_n with $a_n \equiv 0$ and this has been proven.
- 3. The question is **UNKNOWN TO G-K-M**