START RECORDING

Sequences, Series and Summation / Product Notation

CMSC 250

Sequences and Series

- A **sequence** is a **function** from the naturals to the complex numbers (but we often use reals).
 - Typical notation: $a: \mathbb{N} \to \mathbb{C}$
 - Example:
 - 1, 1.5, 2, 2.5, ...

Sequences and Series

- A **sequence** is a **function** from the naturals to the complex numbers (but we often use reals).
 - Typical notation: $a: \mathbb{N} \to \mathbb{C}$
 - Example:
 - 1, 1.5, 2, 2.5, ...
- There are three ways to specify a sequence:
 - Outlining Terms
 - Closed Form
 - Recurrence

- Examples:
 - 1, 2, 3, 4, 5, ...

- Examples:
 - 1, 2, 3, 4, 5, ...
 - 1, 2, 3, 4, 5, 8, 7, 16, 9, 32, ...

- Examples:
 - 1, 2, 3, 4, 5, ...
 - 1, 2, 3, 4, 5, 8, 7, 16, 9, 32, ...
 - 1, 1, 1, 1, ...

- Examples:
 - 1, 2, 3, 4, 5, ...
 - 1, 2, 3, 4, 5, 8, 7, 16, 9, 32, ...
 - 1, 1, 1, 1, ...
 - $\sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \sqrt{6}, \sqrt{7}, \dots$

- Examples:
 - 1, 2, 3, 4, 5, ...
 - 1, 2, 3, 4, 5, 8, 7, 16, 9, 32, ...
 - 1, 1, 1, 1, ...
 - $\sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \sqrt{6}, \sqrt{7}, \dots$
 - 1, 5, 12, 22, 35, 51, 70, 92, ...

- Examples:
 - $a_n = 2^n, n = 0, 1, 2, ...$

•
$$a_n = 2^n, n = 0, 1, 2, ...$$

•
$$b_k = \log(k) + 2k, \ k = 1, 2, 3, ...$$

•
$$a_n = 2^n, n = 0, 1, 2, ...$$

• $b_k = \log(k) + 2k, \ k = 1, 2, 3, ...$
• $c_n = \begin{cases} n, & \text{if } n \text{ is odd} \\ 2^{n/2}, & \text{if } n \text{ is even} \end{cases}$

•
$$a_n = 2^n, n = 0, 1, 2, ...$$

• $b_k = \log(k) + 2k, \ k = 1, 2, 3, ...$
• $c_n = \begin{cases} n, & \text{if } n \text{ is odd} \\ 2^{n/2}, & \text{if } n \text{ is even} \end{cases}$
• $d_k = k! + k^3, \ k = 1, 2, 3, ...$

•
$$F_n = \begin{cases} 1, & \text{if } n = 0, 1 \\ F_{n-1} + F_{n-2}, & \text{if } n \ge 2 \end{cases}$$

•
$$F_n = \begin{cases} 1, & \text{if } n = 0, 1 \\ F_{n-1} + F_{n-2}, & \text{if } n \ge 2 \end{cases}$$

• $T_n = \begin{cases} 1, & \text{if } n = 1, 2 \\ 2, & \text{if } n = 3 \\ T_{n-1} + T_{n-2} + T_{n-3}, & \text{if } n \ge 4 \end{cases}$

•
$$F_n = \begin{cases} 1, & \text{if } n = 0, 1 \\ F_{n-1} + F_{n-2}, & \text{if } n \ge 2 \end{cases}$$

• $T_n = \begin{cases} 1, & \text{if } n = 1, 2 \\ 2, & \text{if } n = 3 \\ T_{n-1} + T_{n-2} + T_{n-3}, & \text{if } n \ge 4 \end{cases}$
• $a_1 = 1$

- $a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$
- Note $\lfloor n/2 \rfloor$ is n/2 rounded down.

• Examples:

•
$$F_n = \begin{cases} 1, & \text{if } n = 0, 1 \\ F_{n-1} + F_{n-2}, & \text{if } n \ge 2 \end{cases}$$

• $T_n = \begin{cases} 1, & \text{if } n = 1, 2 \\ 2, & \text{if } n = 3 \\ T_{n-1} + T_{n-2} + T_{n-3}, & \text{if } n \ge 4 \end{cases}$
• $a_1 = 1$

$$a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}$$

• Note $\lfloor n/2 \rfloor$ is n/2 rounded down.

•
$$b_1 = 2$$

 $b_2 = 3$
 $b_n = 2b_{n-1} - b_{n-2}$

Recursion: Good Idea?

• Example: Fibonacci

$$F_n = \begin{cases} 1, & \text{if } n = 0, 1 \\ F_{n-1} + F_{n-2}, \text{if } n \ge 2 \end{cases}$$

- We *can* use recursion to compute, say, F_{1000}
- Is it a good idea?

Recursion: Good Idea?

• Example: Fibonacci

$$F_n = \begin{cases} 1, & \text{if } n = 0, 1 \\ F_{n-1} + F_{n-2}, \text{if } n \ge 2 \end{cases}$$

- We *can* use recursion to compute, say, F_{1000}
- Is it a good idea?

• Recomputing terms + hidden memory cost of recursion!

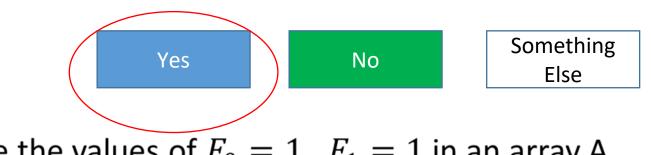
Recursion: Done Right

• Is there a better way to compute F_{1000} ?



Recursion: Done Right

• Is there a better way to compute F_{1000} ?



- 1. Store the values of $F_0 = 1$, $F_1 = 1$ in an array A.
- 2. for i = 2 to 1000

$$F_i = A[i-1] + A[i-2]$$
$$A[i] = F_i$$
end

 This is a very elementary example of a very useful technique called <u>dynamic programming</u>.

Closed Formula for Fibonacci

• The closed-form formula for F_n is:

Recursion vs Closed Formula

1. Computation:

- Recursion leads to a fast dynamic program.
- Classic recursion is elegant.
- Closed form: faster, but numerical issues arise.
- 2. Rate of growth:
 - Recursion gives no hint as to how big F_n is.
 - Closed form yields $F_n \approx (1.618)^n * \frac{1}{\sqrt{5}}$

 Classical View Fibonacci was an Italian Mathematician who lived in 1170--1245 (approx) and used the recurrence to model how rabbits reproduce.

- Classical View Fibonacci was an Italian Mathematician who lived in 1170--1245 (approx) and used the recurrence to model how rabbits reproduce.
- The above sentence is both true and woefully incomplete.

- Classical View Fibonacci was an Italian Mathematician who lived in 1170--1245 (approx) and used the recurrence to model how rabbits reproduce.
- The above sentence is both true and woefully incomplete.
- The Columbus Principle Credit goes to the last person to discover something. It also helps if you are a white male European.
 - Note that Columbus was the last person to discover America.

- Classical View Fibonacci was an Italian Mathematician who lived in 1170--1245 (approx) and used the recurrence to model how rabbits reproduce.
- The above sentence is both true and woefully incomplete.
- The Columbus Principle Credit goes to the last person to discover something. It also helps if you are a white male European.
 - Note that Columbus was the last person to discover America.
- So who was the first person to discover what we call the Fib Numbers?

• Hemachandra in 1150 in India, in connection to Sanskrit Poetry.

- Hemachandra in 1150 in India, in connection to Sanskrit Poetry.
- Great! We should replace `Fib' with `Hemachandra' and give credit where credit is due!

- Hemachandra in 1150 in India, in connection to Sanskrit Poetry.
- Great! We should replace `Fib' with `Hemachandra' and give credit where credit is due!
 - Not so fast.

- Hemachandra in 1150 in India, in connection to Sanskrit Poetry.
- Great! We should replace `Fib' with `Hemachandra' and give credit where credit is due!
 - Not so fast.
- Gopola in 1135 studied these numbers in connection to Sanskrit Poetry.

- Hemachandra in 1150 in India, in connection to Sanskrit Poetry.
- Great! We should replace `Fib' with `Hemachandra' and give credit where credit is due!
 - Not so fast.
- Gopola in 1135 studied these numbers in connection to Sanskrit Poetry.
- Virshanka in 600-800 (we really need to pin that down!) studied these number ... Sanskrit Poetry

- Hemachandra in 1150 in India, in connection to Sanskrit Poetry.
- Great! We should replace `Fib' with `Hemachandra' and give credit where credit is due!
 - Not so fast.
- Gopola in 1135 studied these numbers in connection to Sanskrit Poetry.
- Virshanka in 600-800 (we really need to pin that down!) studied these number ... Sanskrit Poetry
 - So are we done yet? Not by a long shot

- Hemachandra in 1150 in India, in connection to Sanskrit Poetry.
- Great! We should replace `Fib' with `Hemachandra' and give credit where credit is due!
 - Not so fast.
- Gopola in 1135 studied these numbers in connection to Sanskrit Poetry.
- Virshanka in 600-800 (we really need to pin that down!) studied these number ... Sanskrit Poetry
 - So are we done yet? Not by a long shot
- Pringas writings from 500 BC have hints of these sequences Sanskrit Poetry.
- See Bill's Blog post for more on the history
 - https://blog.computationalcomplexity.org/2021/12/did-lane-hemaspaandra-invent-fibnumbers.html

What to Make of All This?

1. We should change the name of Fib numbers to... what? Pringa Numbers?

What to Make of All This?

- 1. We should change the name of Fib numbers to... what? Pringa Numbers?
- 2. History is written BY White Europeans FOR White Europeans. This needs to be rectified.

What to Make of All This?

- 1. We should change the name of Fib numbers to... what? Pringa Numbers?
- 2. History is written BY White Europeans FOR White Europeans. This needs to be rectified.
- 3. Any questions like `Who first did X?" is complicated!

What to Make of All This?

- 1. We should change the name of Fib numbers to... what? Pringa Numbers?
- 2. History is written BY White Europeans FOR White Europeans. This needs to be rectified.
- 3. Any questions like `Who first did X?" is complicated!
- 4. In Math there are well defined questions with well defined answers.
 - In History--- not so much.

What to Make of All This?

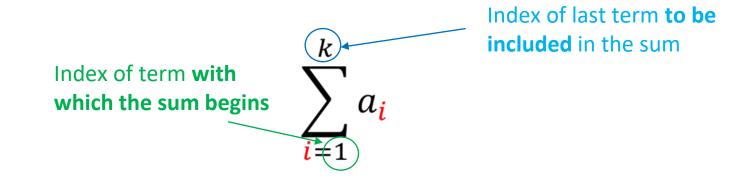
- 1. We should change the name of Fib numbers to... what? Pringa Numbers?
- 2. History is written BY White Europeans FOR White Europeans. This needs to be rectified.
- 3. Any questions like `Who first did X?" is complicated!
- 4. In Math there are well defined questions with well defined answers.
 - In History--- not so much.
- 5. I am glad I am in Math.

Summation Notation

- Suppose I have some terms of a sequence, let's say $a_1, a_2, a_3, \dots, a_k$.
- Their sum, $a_1 + a_2 + a_3 + \dots + a_k$ is denoted as:

Summation Notation

- Suppose I have some terms of a sequence, let's say $a_1, a_2, a_3, \dots, a_k$.
- Their sum, $a_1 + a_2 + a_3 + \dots + a_k$ is denoted as:



Examples

$$\sum_{i=1}^{2} a_i = a_1 + a_2$$

$$\sum_{i=1}^{1} a_i = a_1$$

 $\sum_{i=1}^{0} a_i = ?$

Examples

$$\sum_{i=1}^{2} a_i = a_1 + a_2$$
$$\sum_{i=1}^{1} a_i = a_1$$
$$\sum_{i=1}^{0} a_i = ?$$

$$\sum_{i=1}^{0} a_i = 0$$

• Two reasons for this:

a) (*Intuitive*) If you add together 0 things, you get 0. Duh.

$$\sum_{i=1}^{0} a_i = 0$$

- Two reasons for this:
 - *a)* (*Intuitive*) If you add together 0 things, you get 0. Duh.
 - b) (Mathematical) The following formula should work regardless of our choice of integer variable n_1 :

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n_1} a_i + \sum_{i=n_1+1}^{n} a_i$$

$$\sum_{i=1}^{0} a_i = 0$$

- Two reasons for this:
 - *a)* (*Intuitive*) If you add together 0 things, you get 0. Duh.
 - b) (Mathematical) The following formula should work regardless of our choice of integer variable n_1 :

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n_1} a_i + \sum_{i=n_1+1}^{n} a_i$$

So what happens if we pick $n_1 = 0$?

$$\sum_{i=1}^{0} a_i = 0$$

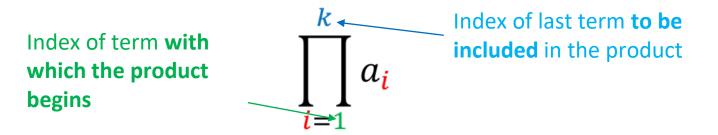
- Two reasons for this:
 - a) (Intuitive) If you add together 0 things, you get 0. Duh.
 - b) (Mathematical) The following formula should work regardless of our choice of integer variable n_1 :

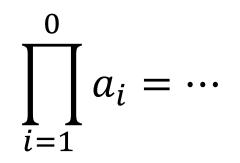
$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n_1} a_i + \sum_{i=n_1+1}^{n} a_i$$

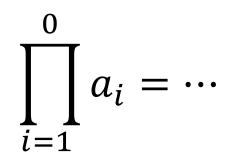
So what happens if we pick $n_1 = 0$? Then, for this to work, it's necessary that $\sum_{i=1}^{0} a_i = 0$

Product Notation

• The **product**, $a_1 \cdot a_2 \cdot ... \cdot a_k$ is denoted as:









$$\prod_{i=1}^{0} a_i = 1$$

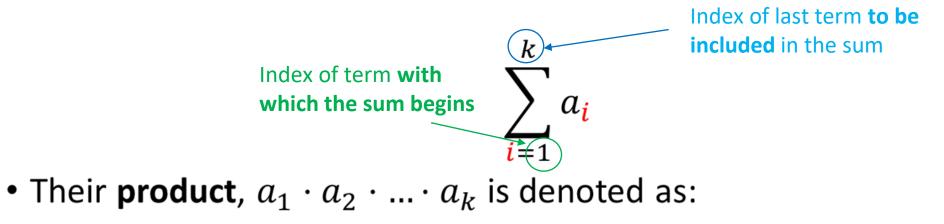
• The following formula has to work for all choices of $n_1 \in \mathbb{N}$:

$$\prod_{i=1}^{n} a_i = \prod_{i=1}^{n_1} a_i \cdot \prod_{i=n_1+1}^{n} a_i$$

• So, for $n_1 = 0$, we need $\prod_{i=1}^{0} a_i = 1$

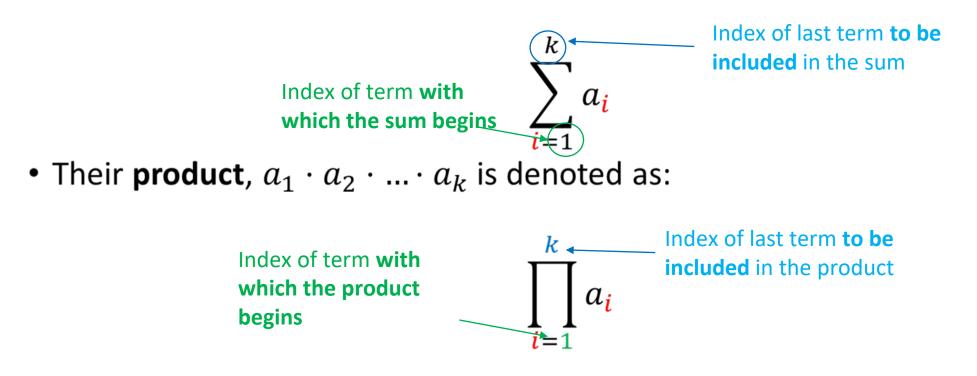
Sum / Product Notation

- Suppose I have some terms of a sequence, let's say $a_1, a_2, a_3, \dots, a_k$.
- Their sum, $a_1 + a_2 + a_3 + \dots + a_k$ is denoted as:



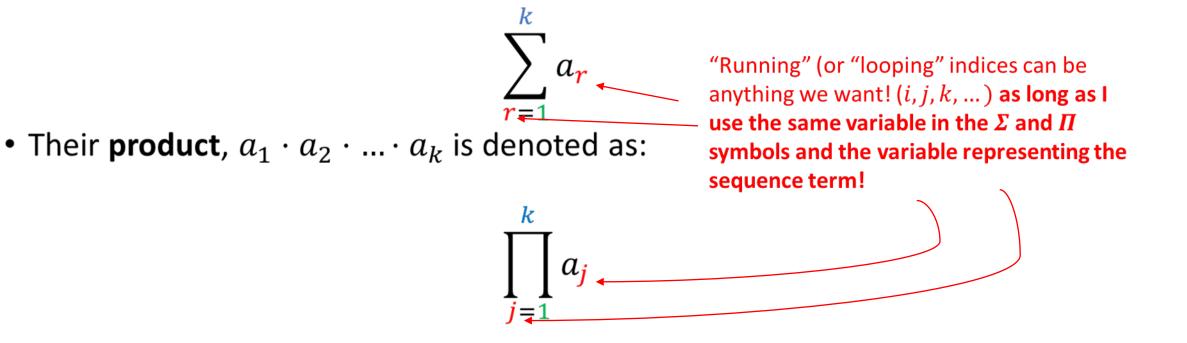
Sum / Product Notation

- Suppose I have some terms of a sequence, let's say $a_1, a_2, a_3, \dots, a_k$.
- Their sum, $a_1 + a_2 + a_3 + \dots + a_k$ is denoted as:



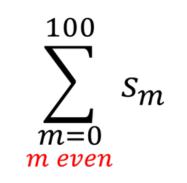
Sum / Product Notation

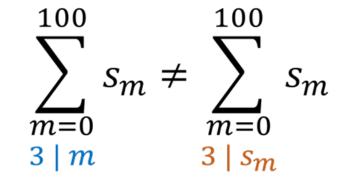
- Suppose I have some terms of a sequence, let's say $a_1, a_2, a_3, \dots, a_k$.
- Their sum, $a_1 + a_2 + a_3 + \dots + a_k$ is denoted as:



Sum-Product Notation

- We can have certain *exclusionary conditions* under the Σ and Π symbols.
- Examples:





Series and Partial Sums

• A *series* is the *sum* of *all* elements of an *infinite* sequence.

$$\sum_{i=0}^{+\infty} a_i = a_0 + a_1 + a_2 + \cdots$$
Or 1, if we start at 1

• A **partial sum** of a sequence, denoted S_n , is the sum ranging from the first up to (and including) the n^{th} term of a (usually infinite) sequence:

$$S_n = \sum_{i=0}^{n} a_i = a_0 + a_1 + a_2 + \dots + a_n$$

Or 1, if we start at 1

• Arithmetic (often called the arithmetic progression):

$$a, a + d, a + 2d, a + 3d, \dots$$
 where $d \in \mathbb{R}$
 $\alpha_1 \qquad \alpha_2 \qquad \alpha_3$

• Arithmetic (often called the arithmetic progression):

$$a, a + d, a + 2d, a + 3d, \dots$$
 where $d \in \mathbb{R}$
 $\alpha_1 \qquad \alpha_2 \qquad \alpha_3$

 Question: which among the following is the correct characterization for a_n?

$$d \cdot a_{n-1}$$
 $\alpha_0 + d \cdot a_{n-1}$ $\alpha_0 + n \cdot d$ $\alpha_0 + (n-1) \cdot d$

• Arithmetic (often called the arithmetic progression):

$$a, a + d, a + 2d, a + 3d, \dots$$
 where $d \in \mathbb{R}$
 $\alpha_1 \qquad \alpha_2 \qquad \alpha_3$

 Question: which among the following is the correct characterization for a_n?

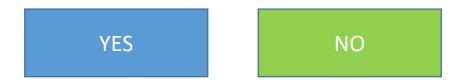
$$d \cdot a_{n-1} \qquad \qquad \alpha_0 + d \cdot a_{n-1} \qquad \qquad \alpha_0 + n \cdot d \qquad \qquad \alpha_0 + (n-1) \cdot d$$

A Question for You

• Arithmetic (often called the arithmetic progression):

 $a, a + d, a + 2d, a + 3d, \dots$ where $d \in \mathbb{R}$

• Should we allow d = 0?

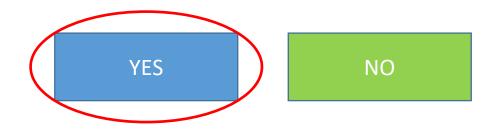


A Question for You

• Arithmetic (often called the arithmetic progression):

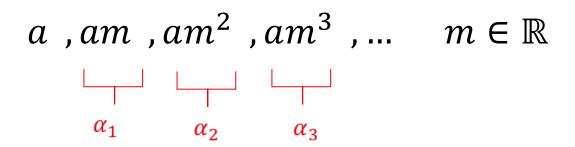
 $a, a + d, a + 2d, a + 3d, \dots$ where $d \in \mathbb{R}$

• Should we allow d = 0?

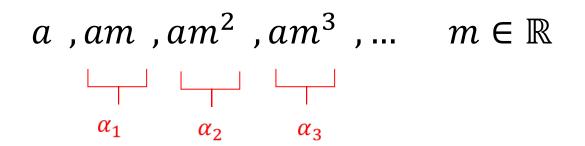


It will be a pretty boring sequence, but it will still be a sequence!

• Geometric sequence (or progression):



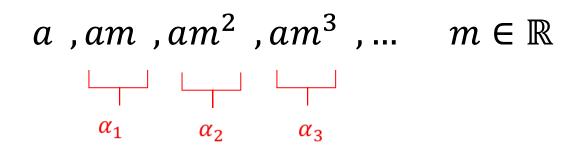
• Geometric sequence (or progression):



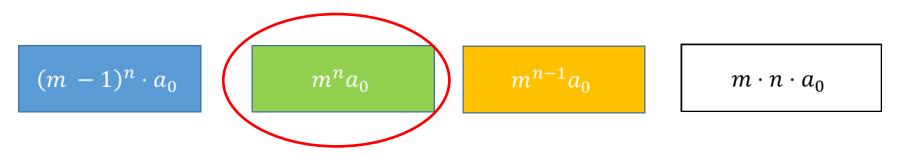
 Question: which among the following is the correct characterization for a_n?

$$(m-1)^n \cdot a_0 \qquad \qquad m^n a_0 \qquad \qquad m^{n-1} a_0 \qquad \qquad m \cdot n \cdot a_0$$

• Geometric sequence (or progression):



 Question: which among the following is the correct characterization for a_n?



The Gauss Story

- Gauss was a great mathematician (1777-1855)
- When Gauss was in 1st grade, the class was misbehaving.
- For punishment, the teacher made everyone compute

 $1+2+\dots+100$

• Gauss did it in 2 minutes. Can you?

The Gauss Trick

$$S = 1 + 2 + \dots + 100$$

$$S = 100 + 99 + \dots + 1$$

$$2S = 101 + 101 + \dots + 101$$

100 terms

 $\Rightarrow 2S = 101 * 100 = 10100 \Rightarrow S = 5050$

- This is a **complete fabrication!**
- This is how this story has progressed over time:

- This is a **complete fabrication!**
- This is how this story has progressed over time:

YEAR GRADE SERIES	YFAR	
-------------------	------	--

- This is a complete fabrication!
- This is how this story has progressed over time:

YEAR	GRADE	SERIES
1960	5 th	1 + 2 + + 60

- This is a complete fabrication!
- This is how this story has progressed over time:

YEAR	GRADE	SERIES
1960	5 th	1 + 2 + + 60
1980	3 rd	1 + 2 + + 80

- This is a complete fabrication!
- This is how this story has progressed over time:

YEAR	GRADE	SERIES
1960	5 th	1 + 2 + + 60
1980	3 rd	1 + 2 + + 80
2000s	1 st	1 + 2 + + 100

- This is a **complete fabrication!**
- This is how this story has progressed over time:

YEAR	GRADE	SERIES
1960	5 th	1 + 2 + + 60
1980	3 rd	1 + 2 + + 80
2000s	1 st	1 + 2 + + 100

• The story seems to have converged to 1st grade, 1 + 2 + ... + 100

• Harmonic:

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

• **Fibonacci**: $F_0 = F_1 = 1$ and $\forall n \ge 2$, $F_n = F_{n-1} + F_{n-2}$

1, 1, 2, 3, 5, 8, 13, 21, ...

What We'll Do Next

- We will have an intro to induction.
- The following can be proven via induction:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

ST()P RECORDING