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An Interesting Sum

May use (n − 1)11 ∼ n11 − 11n10.
BY CONSTRUCTIVE INDUCTION find A such that

(∀n ≥ 100)

[ n∑
i=100

i10 ≤ An11
]
.



Base Case

IB n = 100.
∑100

i=100 i
10 = 10010.

We need

10010 ≤ A× 10011.

A ≥ 10010

10011
=

1

100
.

So the constraint is A ≥ 1
100 .
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IH and IS

IH
∑n−1

i=100 i
10 ≤ A(n − 1)11.

IS

n∑
i=100

i10 = (
n−1∑
i=100

i10) + n10 ≤ A(n − 1)11 + n10.

We need

A(n − 1)11 + n10 ≤ An11

n10 ≤ An11 − A(n − 1)11 ∼ An11 − A(n11 − 11n10)

n10 ≤ An11 − An11 + 11An10 = 11An10

A ≥ 1

11
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Picking A

The two constraints on A are

1. A ≥ 1
100 , and

2. A ≥ 1
11 .

Hence we choose A = 1
11 .
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Interesting Sum



Generalization of Interesting Sum

May use (n − 1)a ∼ na − ana−1.
BY CONSTRUCTIVE INDUCTION find a constant B such
that

(∀n ≥ 100)

[ n∑
i=100

ia ≤ Bna+1

]
.



Base Case

IB n = 100.
∑100

i=100 i
a = (100)a. We need that

100a ≤ B × 100a+1.

So the constraint is

B ≥ 100a

100a+1
=

1

100
.
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Picking B

The two constraints on B are

1. B ≥ 1
100 , and

2. B ≥ 1
a+1 .

Hence pick

B = max

{
1

100
,

1

a+ 1

}
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Coin Problem

Daleks have a 10-cent coin, and a 13-cent coin.

Problem Find C such that

▶ C − 1 cannot be written as 10x + 13y where x , y ∈ N, and
▶ (∀n ≥ C )(∃x , y ∈ N)[n = 10x + 13y ].

▶ Prove the above once you found it.

We asked you to do it by computer
We will do it today by constructive induction.
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Coin Problem Solution. Plan and Base Case

Plan

1. If there is a 10-coin then we will swap it out and put in a 13.
So we will go P(n) → P(n + 3). Hence we need for a base
case P(C ), P(C + 1), P(C + 2).

2. If there are no 10 coins then we plan to swap out nine
13-coins (117) and put in twelve 10-coins (120) Hence we
need for a base case P(C ), P(C + 1), P(C + 2).

IB C , C + 1, C + 2 are all of the form 10x + 13y .
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IH and IS
IH For all C ≤ n′ < n there exists x ′, y ′ such that n′ = 10x ′+13y ′.

Note Since the IB was C ,C + 1,C + 2 we have: the theorem
holds for n − 3. So (∃x ′, y)[n − 3 = 10x ′ + 13y ′].
IS
Case 1 If x ′ ≥ 1 then we swap out a 10 and put in a 13.

10(x ′ − 1) + 13(y ′ + 1) = 10x ′ + 13y ′ + 3 = n − 3 + 3 = n

Case 2 If y ′ ≥ 9 then we swap out 9 13’s and put in a 12 10’s:

10(x ′+12)+13(y ′−9) = 10x ′+13y ′+120−117 = n−3+3 = n.

Case 3 x ′ ≤ 0 and y ′ ≤ 8. Then
n − 3 = 10x ′ + 13y ′ ≤ 13× 8 = 104.
n ≤ 107.
The proof that P(n − 3) → P(n) only works when n ≥ 108.
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Our Guess and Our Plan to Find C

We guess that the following is true:

1. 107 is not of the form 10x + 13y .

2. 108, 109, 110 are of the form 10x + 13y .

What might happen? Cases.

1. 107 is not of the form but 108, 109, 110 are. Then C = 108.

2. At least one of 108, 109, 110 are not of the form. Find
C ≥ 108 such that C − 1 is not of the form but
C ,C + 1,C + 2 are of the form. Thats your C .

3. 107,108,109,110 are of the form. Hence all n ≥ 107 are of the
form.
Look at 106, 105, . . . until you find a number NOT of that
form. That number is your C − 1 so one more is your C .
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107

Assume, BWOC, that there exists x , y ≥ 0 such that

107 = 10x + 13y

Take both sides mod 10 to get
7 ≡ 3y mod 10.
If y ≡ 0, 2, 4, 6, 8 then 3y is even so not ≡ 7 (mod 10).
y ≡ 1: 3× 1 ≡ 3 ̸≡ 7.
y ≡ 3: 3× 3 ≡ 9 ̸≡ 7.
y ≡ 5: 3× 5 ≡ 6 ̸≡ 7.
y ≡ 7: 3× 7 ≡ 1 ̸≡ 7.
y ≡ 9: 3× 9 ≡ 7.
Hence y ≡ 9 (mod 10). Hence y ≥ 9.
But 13× 9 = 117 > 107.
Hence no y ≡ 9 (mod 10) can work.
Hence no y can work.
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108,109,110

Need that 108, 109, 110 ARE of the form 10x + 13y .

1. 108 = 3× 10 + 6× 13.

2. 109 = 7× 10 + 3× 13.

3. 110 = 11× 10 + 0× 13.

So we are done! C = 108.
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Sum of Squares



Fourth Powers Mod 16

Find the following set

X = {x4 (mod 16) : x ∈ {0, . . . , 15}}.

1. x = 2k : x4 = 16k4 ≡ 0. Takes care of 0, 2, . . . , 14.

2. x4 ≡ (16− x)4 cuts down on cases.

3. 14 ≡ 1 so 154 ≡ 1.

4. 34 = 81 ≡ 1 so 134 ≡ 1.

5. 54 = 52 × 52 ≡ 9× 9 ≡ 81 ≡ 1. So 114 ≡ 1.

6. 74 = 72 × 72 ≡ 49× 49 ≡ 1× 1. So 94 ≡ 1.

X = {0, 1}.
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x ≡ 15 → x is NOT the sum of 14 4th powers

Assume BWOC x =
∑14

i=1 x
4
i .

Take this equation mod 16.
15 ≡

∑14
i=1 x

4
i

Every x4i (mod 16) is in {0, 1}.

Hence
∑14

i=1 x
4
i ∈ {0, . . . , 14}.

Contradiction.
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x ≡ 1 (mod 2) → x4 ≡ 1 (mod 16)

We give two proofs.

Pf One x = 2k + 1

x2 = (2k + 1)4 = (2k)4 + 4(2k)3 + 6(2k)2 + 4(2k) + 14

= 16k4+32k3+24k2+8k+1 ≡ 24k2+8k+1 ≡ 16k2+8k2+8k+1 ≡ 8k(k+1)+1 ≡ 1

(We use that k(k + 1) ≡ 0 (mod 2).)

Pf Two x ≡ 1 (mod 2) → x ≡ 1, 3, 5, 7, 9, 11, 13, 15 (mod 16).
We did this earlier.
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x4
1 + · · ·+ x4

14 ≡ 0 (mod 16) → (∀i)[xi ≡ 0 (mod 2)

Assume that m of the xi ’s are odd and 14−m are even.

x41 + · · ·+ x414 ≡ 0 (mod 16)

But also

x41 + · · ·+ x414 ≡ m (mod 16)

So m = 0.
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Main Thm and IB

Thm Let n ≥ 0. Let k ∈ N. Then 16n(16k + 15) cannot be
written as the sum of 14 4th powers.

Prove is by induction on n.
IB n = 0. (∀k)[16k + 15 is not the sum of 14 4th powers].
This was proven in an earlier part.
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IH and IS

IH For all k ′, 16n−1(16k ′ + 15) is not the sum of 14 4th powers.
(All we need is 16n−1(16k + 15) is not the sum of 14 4th powers.)

IS Let n ≥ 1. We want to show that, for all k , 16n(16k + 15) is
not the sum of 14 4th powers.
Assume, BWOC: (∃x1, . . . , x14)[16n(16k + 15) = x41 + · · ·+ x414].

So x41 + · · ·+ x414 ≡ 0 (mod 16).

By earlier part x1, . . . , x14 = 2y1, . . . , 2y14.
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IH and IS (cont)
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For all i , xi = 2yi . So

16n(16k + 15) = (2y1)
4 + · · ·+ (2x14)

4 = 24y41 + · · ·+ 24y414 =

= 16(y41 + · · ·+ y414)

Divide by 16

16n−1(16k + 15) = y41 + · · ·+ y414

This is a contradiction.
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