START RECORDING

Logical Equivalence

CMSC250

Equivalences

• Let's observe the following truth table

p	q	$p \wedge q$	$q \wedge p$
F	F	F	F
F	Т	F	F
T	F	F	F
T	Т	Т	Т

Equivalences

• Let's observe the following truth table

p	q	$p \wedge q$	$q \wedge p$
F	F	F	F
F	T	F	F
T	F	F	F
T	Т	T	T

- These columns are the same!
- Conclusion: $p \land q \equiv q \land p$

Equivalences

Let's observe the following truth table

p	q	$p \wedge q$	$q \wedge p$
F	F	F	F
F	T	F	F
Τ	F	F	F
Т	Т	T	Т

• These columns are the same!

• Conclusion: $p \land q \equiv q \land p$

This symbol means "logical equivalence"

• Please fill – in the following truth table:

p	q	$p \implies q$	$(\sim p) \lor q$
F	F	?	?
F	Т	?	?
T	F	?	?
T	Т	?	?

\Leftrightarrow vs \equiv

- \Leftrightarrow ("if and only if") is used to form statements, e.g.
 - $p \Leftrightarrow (q \land (\sim r))$
- \equiv ("logically equivalent to") compares two statements, e.g
 - $(p \land q) \equiv (q \land p)$

• Let's fill in the following truth table :

а	b	$\sim (a \wedge b)$	$(\sim a) \lor (\sim b)$
F	F	?	?
F	Τ	?	?
T	F	?	?
Т	Т	?	?

• Let's fill in the following truth table :

a	b	$\sim (a \wedge b)$	$(\sim a) \lor (\sim b)$
F	F	T	T
F	Τ	T	T
T	F	T	Т
Т	Т	F	F

• Let's fill in the following truth table :

а	b	$\sim (a \wedge b)$	$(\sim a) \lor (\sim b)$
F	F	T	T
F	Τ	T	T
Т	F	Т	Τ
Т	Т	F	F

- These columns are the same!
- Conclusion: $\sim (a \land b) \equiv (\sim a) \lor (\sim b)$

• Let's fill in the following truth table :

а	b	$\sim (a \wedge b)$	$(\sim a) \lor (\sim b)$
F	F	T	T
F	Τ	T	T
T	F	Т	Τ
T	Т	F	F

This result is known as

De Morgan's law

• Conclusion:
$$\sim (a \land b) \equiv (\sim a) \lor (\sim b)$$

Understanding De Morgan's Law

• ~("Alice is Blonde" ∧ "Alice wears Green Dress"): Clearly true

Understanding De Morgan's Law

• ~("Alice is Blonde" ∧ "Alice wears Green Dress"): Clearly true

• (~"Alice is Blonde") \((~"Alice wears Green Dress"):
Also true!

De Morgan's Laws (there's two of them)

$$\sim (a \lor b) \equiv (\sim a) \land (\sim b)$$

$$\sim (a \land b) \equiv (\sim a) \lor (\sim b)$$

- Conjunctions flipped to disjunctions, and vice versa
- Negation operator (~) distributed across terms
- These laws give us our first pair of equivalent expressions!

• How do we prove an equivalence? (e.g $\sim (a \land b) \equiv (\sim a) \lor (\sim b)$)

• How do we prove an equivalence? (e.g $\sim (a \land b) \equiv (\sim a) \lor (\sim b)$)

1. Truth tables

• One major problem: for n variables, 2^n rows (input combinations) to enumerate!

• How do we prove an equivalence? (e.g $\sim (a \land b) \equiv (\sim a) \lor (\sim b)$)

1. Truth tables

- One major problem: for n variables, 2^n rows (input combinations) to enumerate!
- Can we do better?

• How do we prove an equivalence? (e.g $\sim (a \land b) \equiv (\sim a) \lor (\sim b)$)

1. Truth tables

- One major problem: for n variables, 2^n rows (input combinations) to enumerate!
- Can we do better?

2. Laws of logical equivalence in a chain, one after the other!

- We no longer have to compare 2^n input combinations to ensure that they all map to the same truth value (**T** or **F**). \odot
- But somebody needs to code the system up!

Table of equivalences

Commutativity of binary operators	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
Associativity of binary operators	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
Distributivity of binary operators	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
Identity laws	$p \wedge T \equiv p$	$p \lor F \equiv p$
Negation laws	$p \lor (\sim p) \equiv T$	$p \wedge (\sim p) \equiv F$
Double negation	$\sim (\sim p) \equiv p$	
Idempotence	$p \wedge p \equiv p$	$p \lor p \equiv p$
De Morgan's axioms	$\sim (p \land q) \equiv (\sim p) \lor (\sim q)$	$\sim (p \lor q) \equiv (\sim p) \land (\sim q)$

• This exact table will be **given to you** during **all** exams where you might need it, so that you don't have to remember some "exotic" names

Table of equivalences

Universal bound laws	$p \lor T \equiv T$	$p \wedge F \equiv F$
Absorption laws	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
Negations of contradictions / tautologies	${\scriptscriptstyle \sim} F \equiv T$	${\scriptscriptstyle \sim} T \equiv F$
Contrapositive	$(a \Rightarrow b) \equiv ((\sim b) \Rightarrow (\sim a))$	
Equivalence between biconditional and implication	$a \Leftrightarrow b \equiv (a \Rightarrow b) \land (b \Rightarrow a)$	
Equivalence between implication and disjunction	$a \Rightarrow b \equiv$	$\equiv \sim a \lor b$

• This exact table will be **given to you** during **all** exams where you might need it, so that you don't have to remember some "exotic" names

Proving equivalences using laws

Suppose we want to investigate if

$$(p \wedge r) \vee ((p \vee s) \wedge (p \vee a)) \equiv p \vee (s \wedge a)$$

Proving equivalences using laws

Suppose we want to investigate if

$$(p \wedge r) \vee ((p \vee s) \wedge (p \vee a)) \equiv p \vee (s \wedge a)$$

- How many rows would the truth table have?
 - $2^4 = 16 \odot$ Too much time!

Proving equivalences using laws

Suppose we want to investigate if

$$(p \land r) \lor ((p \lor s) \land (p \lor a)) \equiv p \lor (s \land a)$$

- How many rows would the truth table have?
 - $2^4 = 16 \odot$ Too much time!
- Let's see how we could use the laws of logical equivalence to prove this equivalence
 - Important: document the laws!

$$(p \land r) \lor ((p \lor s) \land (p \lor a))$$

$$\equiv (p \wedge r) \vee (p \vee (s \wedge a))$$

(Distributivity)

$$(p \land r) \lor ((p \lor s) \land (p \lor a))$$

$$\equiv (p \wedge r) \vee (p \vee (s \wedge a))$$

$$\equiv ((p \land r) \lor p) \lor (s \land a)$$

(Distributivity)

(Associativity)

$$(p \land r) \lor ((p \lor s) \land (p \lor a))$$

$$\equiv (p \wedge r) \vee (p \vee (s \wedge a))$$

$$\equiv ((p \land r) \lor p) \lor (s \land a)$$

$$\equiv (p \lor (p \land r)) \lor (s \land a)$$

(Distributivity)

(Associativity)

(Commutativity)

$$(p \land r) \lor ((p \lor s) \land (p \lor a))$$

$$\equiv (p \wedge r) \vee (p \vee (s \wedge a))$$

$$\equiv ((p \land r) \lor p) \lor (s \land a)$$

$$\equiv (p \lor (p \land r)) \lor (s \land a)$$

$$\equiv p \vee (s \wedge a)$$

(Distributivity)

(Associativity)

(Commutativity)

(Absorption)

More equivalences

• Let's prove the following equivalences true or false together.

$$a\Rightarrow b\equiv (\sim b)\Rightarrow (\sim a)$$
 (Contrapositive) $a\Rightarrow b\equiv (\sim a)\Rightarrow (\sim b)$ (Inverse Error) $a\Leftrightarrow b\equiv ((\sim a)\vee b)\wedge ((\sim b)\vee a)$

Truth Tables vs Proofs of Equivalence

• When we want to show that $\phi(x_1, x_2, ... x_n) = \psi(x_1, x_2, ..., x_n)$:

Truth Table		Equivalence Proof	
Pro	Con	Pro	Con
Always works	Requires 2 ⁿ <u>space</u>	Often occupies much less than 2^n space	There are some cases where it will still take 2^n space / time
No "cleverness" needed: just build all rows mechanically	Requires 2 ⁿ <u>time</u>	Often spends much less than 2^n time	Requires "cleverness"

STOP RECORDING