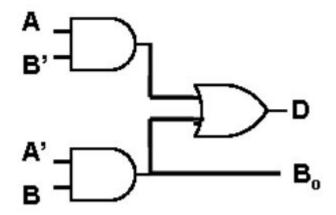

Circuits

250H


Half Adders

X	Y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

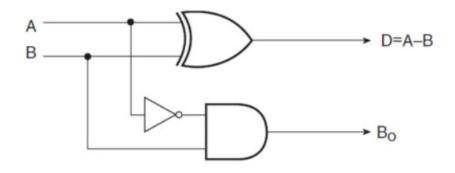
Half Subtractors

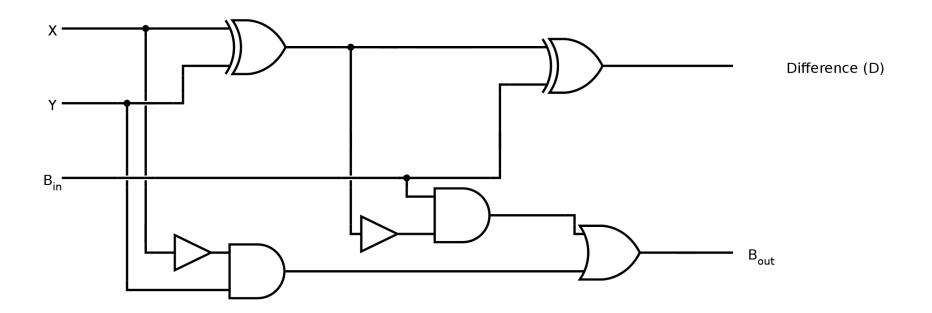
X	Y	D	В
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Exclusive OR

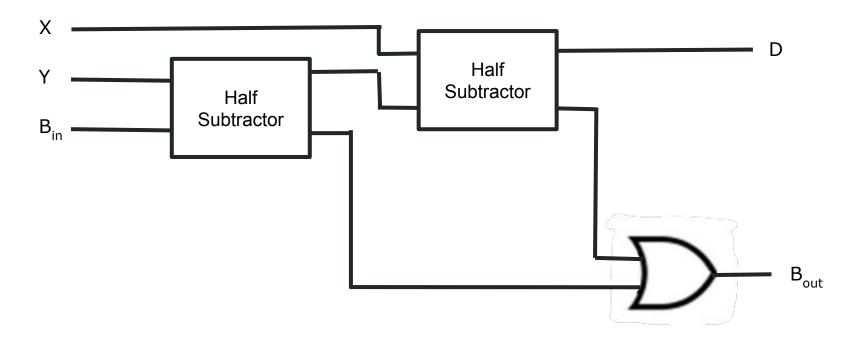
X	Y	X ⊕ Y
0	0	0
0	1	1
1	0	1
1	1	0

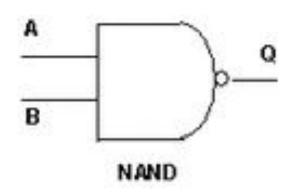
Exclusive OR

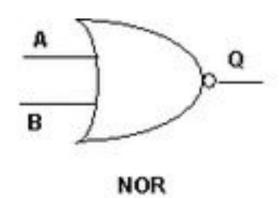

X	Y	X⊕Y
0	0	0
0	1	1
1	0	1
1	1	0


Wait didn't we just see that column

Half Subtractors

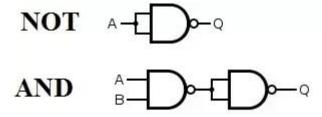

X	Y	D	В
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

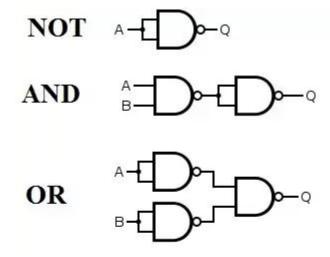

Full Subtractors


Full Subtractors

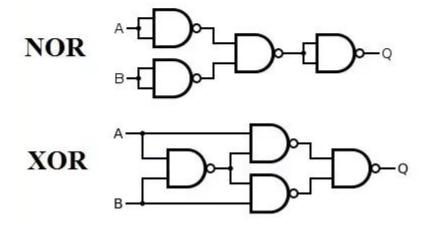
NAND and NOR

А	В	Q
0	0	1
0	1	1
1	0	1
1	1	0


А	В	Q
0	0	1
0	1	0
1	0	0
1	1	0


NAND and NOR

◆ Any circuit can be created with only NAND and NOR gates


NAND and NOR

- ◆ Any circuit can be created with only NAND and NOR gates
- ◆ Try and create NOT, AND, and OR using only NAND gates

Boolean Algebra Identities

☐ TABLE 3 Basic Identities of Boolean Algebra

1.
$$X + 0 = X$$

3.
$$X+1=1$$

$$5. \quad X + X = X$$

7.
$$X + \overline{X} = 1$$

9.
$$\overline{\overline{X}} = X$$

$$2. \quad X \cdot 1 = X$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

$$X \cdot \overline{X} = 0$$

$$10. \quad X + Y = Y + X$$

12.
$$X + (Y + Z) = (X + Y) + Z$$

14.
$$X(Y+Z) = XY+XZ$$

16.
$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$

11.
$$XY = YX$$

13.
$$X(YZ) = (XY)Z$$

15.
$$X + YZ = (X + Y)(X + Z)$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

1.
$$X + 0 = X$$

3.
$$X+1=1$$

5.
$$X + X = X$$

7.
$$X + \overline{X} = 1$$

9.
$$\overline{\overline{X}} = X$$

$$2. X \cdot 1 = X$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

10.
$$X + Y = Y + X$$

12.
$$X + (Y + Z) = (X + Y) + Z$$

14.
$$X(Y+Z) = XY + XZ$$

16.
$$\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

11.
$$XY = YX$$

13.
$$X(YZ) = (XY)Z$$

15.
$$X + YZ = (X + Y)(X + Z)$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

$$\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$$

Let's Check with Truth Tables

X	X	Y	Y	$\overline{X}\overline{Y} + \overline{X}Y + XY$	X + Y
0	1	0	1	1	1
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	0	1	1

$$\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$$

$$\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$$

$$ar{X}ar{Y} + ar{X}Y + XY = ar{X} + Y$$
 $ar{X}ar{Y} + ar{X}Y + ar{X}Y + XY = ar{X} + Y$

$$ar{X}ar{Y} + ar{X}Y + XY = ar{X} + Y$$
 $ar{X}ar{Y} + ar{X}Y + ar{X}Y + XY = ar{X} + Y$
 $ar{X}(ar{Y} + Y) + Y(ar{X} + X) = ar{X} + Y$

$$ar{X}ar{Y} + ar{X}Y + XY = ar{X} + Y$$
 $ar{X}ar{Y} + ar{X}Y + ar{X}Y + XY = ar{X} + Y$
 $ar{X}(ar{Y} + Y) + Y(ar{X} + X) = ar{X} + Y$
 $ar{X}(1) + Y(1) = ar{X} + Y$

$$ar{X}ar{Y} + ar{X}Y + XY = ar{X} + Y$$
 $ar{X}ar{Y} + ar{X}Y + ar{X}Y + XY = ar{X} + Y$
 $ar{X}ig(ar{Y} + Yig) + Yig(ar{X} + Xig) = ar{X} + Y$
 $ar{X}(1) + Y(1) = ar{X} + Y$
 $ar{X} + Y = ar{X} + Y$

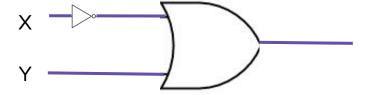
$$\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$$

♦ How many gates on the left?

$$\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$$

- ♦ How many gates on the left?
 - ♦ 8

$$\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$$


- How many gates on the left?
 - \$ 8
- ♦ How many gates on the right?

$$\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$$

- How many gates on the left?
 - \$ 8
- ♦ How many gates on the right?

$$\bar{X}\bar{Y} + \bar{X}Y + XY = \bar{X} + Y$$

- ✦ How many gates on the left?⇔ 8
- ✦ How many gates on the right?⇔ 2
- → 2 is much better than 8

Use Algebraic Manipulation to show the following

$$1.\bar{A}B + \bar{B}\bar{C} + AB + \bar{B}C = 1$$

$$2.Y + \bar{X}Z + X\bar{Y} = X + Y + Z$$

$$3. \bar{X}\bar{Y} + \bar{Y}Z + XZ + XY + Y\bar{Z} = \bar{X}\bar{Y} + XZ + Y\bar{Z}$$

$$4.AB\bar{C} + B\bar{C}\bar{D} + BC + \bar{C}D = B + \bar{C}D$$

5. Given that $A \cdot B = 0$ and A + B = 1, Show

$$(A+C)\cdot\left(ar{A}+B
ight)\,\cdot(B+C)\,=\,B\cdot C$$