Rev For Mid1l: Proofs



Review of Mods and
GCD



Mods

The symbol | means divides.



Mods

The symbol | means divides.
Two equivalent definitions of Mod



Mods

The symbol | means divides.
Two equivalent definitions of Mod

1. a= b (mod m) means m divides b — a.



Mods

The symbol | means divides.
Two equivalent definitions of Mod

1. a= b (mod m) means m divides b — a.

2. The remainder when you divide a by m or b by m is the same.



Mods

The symbol | means divides.
Two equivalent definitions of Mod

1. a= b (mod m) means m divides b — a.

2. The remainder when you divide a by m or b by m is the same.

We usually think of a = b (mod m) to mean that



Mods

The symbol | means divides.
Two equivalent definitions of Mod

1. a= b (mod m) means m divides b — a.

2. The remainder when you divide a by m or b by m is the same.

We usually think of a = b (mod m) to mean that
a is large and



Mods

The symbol | means divides.
Two equivalent definitions of Mod

1. a= b (mod m) means m divides b — a.

2. The remainder when you divide a by m or b by m is the same.

We usually think of a = b (mod m) to mean that
a is large and
0<b<m-—1 (sosmall).



Do Examples of Mods

| ask random people in the class what a is congruent to mod m.
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Addition and Mult with Mods

Theorem Assume
a1 = by (mod m) and a; = by (mod m).

Then:
1. a1+ ap = by + by (mod m).

2. ajap = biby (mod m).
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Theorem (Va € N)[a’ = a (mod 7)].
Note The theorem is about ALL a € N.
Do we have to consider all a € N. That would be insane!
Only consider a=0,1,2,3,4,5,6 (mod 7). All = are mod 7.
We'II need: 23 =1,33=-1,43=1,53=-1,63=1.
=0. YES
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Using = in Easy Proofs

Theorem (Va € N)[a” = a (mod 7)].

Note The theorem is about ALL a € N.

Do we have to consider all a € N. That would be insane!
Only consider a=0,1,2,3,4,5,6 (mod 7). All = are mod 7.
We'll need: 23=1,33=-1,43=1,53=-1,63=1.

)
) 1" =1. YES

)21 =23x23x2=1x1x2=2. YES
3)37=33x33x3=-1x-1x3=3. YES
)4 =483 x4 x4=1x1x4=4 YES
)57 =53x53x5=-1x—-1x5=5. YES
)6/ =63x63x6=1x1x6=6. YES
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Can compute a"” (mod m) in < 2log n steps.

3190 (mod 13). DO WITH YOUR NEIGHBOR.

Step One 100 = 26 + 25 + 22, So 3100 — 32° , 32° 32,
Step Two Repeated Squaring

32° =3
32 =9
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Powering Fast

Can compute a"” (mod m) in < 2log n steps.

3190 (mod 13). DO WITH YOUR NEIGHBOR.

Step One 100 = 26 + 25 + 22, So 3100 — 32° , 32° 32,
Step Two Repeated Squaring

3 =3

32 =9

32j = (32:)2 =92=81=3
3 =(32)2=32=09.
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Powering Fast

Can compute a"” (mod m) in < 2log n steps.

3190 (mod 13). DO WITH YOUR NEIGHBOR.

Step One 100 = 26 + 25 + 22, So 3100 — 32° , 32° 32,
Step Two Repeated Squaring

3 =3

32 =9

3 =(32)Q2=92=81=3
3= (372 =32=09

3 =(32=92=81=3
32 =(3)2=32=9



Powering Fast

Can compute a"” (mod m) in < 2log n steps.

3190 (mod 13). DO WITH YOUR NEIGHBOR.

Step One 100 = 26 + 25 + 22, So 3100 — 32° , 32° 32,
Step Two Repeated Squaring

32 =3

32 =9

32j = (32:)2 =92=81=3

325 = (323)2 =32=0

32 =(32)2=92=81=3

3 =(3¥R=32=09.

Step Three 31900 =32 x 32" x 3 =9 x 3 x3=27 x3=3.
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Definition The Greatest Common Divisor of x, y is the largest
number that divides both x and y. We denote this GCD(x, y) .

Do Examples with the class.
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Computing GCD

Assume x < y. Then

GCD(x,y) = GCD(x,y — x)

Better Remove the largest multiple of x that is < y.
Have class do an example.
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Proving a dx Theorem over Z

Theorem (3x)[~(3a, b, ¢)[x = a% + b? + ¢?]]

To prove a dx give x and prove the thm for x.

x = 7. We show 7 is not the sum of 3 squares. Cases.

Case 1 At least one of a,b,cis > 3. Then a®> + b> +c>>9 > 7.
Case 2 At least two of a, b, c are > 2. Then a®> + b>+c?> >8> 7.
Case 3 The only case left: at most 1 of a, b,c is 2. Then

P4+ +c2<4+1+1=6<T.

Upshot For 3x Theorems SHOW THE x. (Nonconstructive proofs
are possible though rare for this course.)
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Proving 7*/3 ¢ Q Using Mods

Want 71/3 ¢ Q. We need the Lemma. All = is mod 7.
Lemma (Vn)[n®* =0 (mod 7) = n=0 (mod 7)].
Take Contrapositive:

(Vn)[n £ 0 (mod 7) — n® £ 0 (mod 7)]. 7 cases
n=1-n=1+#0.

n=2-n=8=1+#0.

n=3-n=27=6+#0.
n=4—-n=(-38=-33=-6=1#£0.
n=5-n=(-283=-22=-1=6#0.
n=6-n=(-1)>3=-1=6#0.

Proof of Lemma is done. Next slide is proof of irrationality.
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Want 71/3 ¢ Q. Assume BWOC that 71/3 € Q.
So there exists a, b in lowest terms such that

71/3 :%
b7i/3 =2
703 =233

a=0.
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Want 71/3 ¢ Q. Assume BWOC that 71/3 € Q.
So there exists a, b in lowest terms such that

71/3 :%
b7i/3 =2
763 = &°

a>=0. By Lemma a=0. a=7c.
7b3 = a% = (7¢)3 = 73¢3.
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Proving 7'/3 ¢ Q Using Mods (cont)

Want 71/3 ¢ Q. Assume BWOC that 71/3 € Q.
So there exists a, b in lowest terms such that

71/3 :%
b7i/3 =2
763 = &°

a>=0. By Lemma a=0. a=7c.
7b3 = a3 = (7c¢)® = 73c5.
b3 =7%c3. By Lemma b= 0.



Proving 7'/3 ¢ Q Using Mods (cont)

Want 71/3 ¢ Q. Assume BWOC that 713 Q.
So there exists a, b in lowest terms such that

71/3 :%
b7i/3 =2
763 = &°

a>=0. By Lemma a=0. a=7c.

7b3 = a3 = (7c¢)® = 73c5.
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Proving 7'/3 ¢ Q Using Mods (cont)

Want 71/3 ¢ Q. Assume BWOC that 713 Q.
So there exists a, b in lowest terms such that

71/3 :%
b7i/3 =2
763 = &°

a>=0. By Lemma a=0. a=7c.

7b3 = a3 = (7c¢)® = 73c5.

b3 =7%c3. By Lemma b= 0.

AH-HA! 7 divides both a and b. So a, b not in lowest terms.
Contradiction!
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The above proof is a template for these kinds of proofs.

To show x'/7 ¢ Q.

Step 1 Prove (Vn)[n* =0 (mod x) = n=0 (mod x)].

Take Contrapositive (Vn)[n # 0 (mod x) — n* 0 (mod x)].
Prove by x — 1 cases.
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The above proof is a template for these kinds of proofs.

To show x'/7 ¢ Q.

Step 1 Prove (Vn)[n* =0 (mod x) = n=0 (mod x)].

Take Contrapositive (Vn)[n # 0 (mod x) — n* 0 (mod x)].
Prove by x — 1 cases.

Step 2 Assume, BWOC, that x!/% = 2: a, b in lowest terms.
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Irrationality Using Mods-Generalized

The above proof is a template for these kinds of proofs.

To show x'/7 ¢ Q.

Step 1 Prove (Vn)[n* =0 (mod x) = n=0 (mod x)].

Take Contrapositive (Vn)[n # 0 (mod x) — n* 0 (mod x)].
Prove by x — 1 cases.

Step 2 Assume, BWOC, that x!/% = 2: a, b in lowest terms.
bx/z = 3
b*x = a*

a=0 (mod x). By Lemma a=0 (mod x). a = xc.



Irrationality Using Mods-Generalized

The above proof is a template for these kinds of proofs.

To show x'/7 ¢ Q.

Step 1 Prove (Vn)[n* =0 (mod x) = n=0 (mod x)].

Take Contrapositive (Vn)[n # 0 (mod x) — n* 0 (mod x)].
Prove by x — 1 cases.

Step 2 Assume, BWOC, that x!/% = 2: a, b in lowest terms.
bx'/7 = a

b*x = a*

a=0 (mod x). By Lemma a=0 (mod x). a = xc.

b*x = a* = (xc)* = x*c*



Irrationality Using Mods-Generalized

The above proof is a template for these kinds of proofs.

To show x'/7 ¢ Q.

Step 1 Prove (Vn)[n* =0 (mod x) = n=0 (mod x)].

Take Contrapositive (Vn)[n # 0 (mod x) — n* 0 (mod x)].
Prove by x — 1 cases.

Step 2 Assume, BWOC, that x!/% = 2: a, b in lowest terms.
bx'/% = a

b*x = a*

a=0 (mod x). By Lemma a=0 (mod x). a = xc.

b*x = a* = (xc)* = x*c*

b? = Xz—lcz



Irrationality Using Mods-Generalized

The above proof is a template for these kinds of proofs.
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Irrationality Using Mods-Generalized

The above proof is a template for these kinds of proofs.

To show x'/7 ¢ Q.

Step 1 Prove (Vn)[n* =0 (mod x) = n=0 (mod x)].

Take Contrapositive (Vn)[n # 0 (mod x) — n* 0 (mod x)].
Prove by x — 1 cases.

Step 2 Assume, BWOC, that x!/% = 2: a, b in lowest terms.
bx'/% = a

b*x = a*

a=0 (mod x). By Lemma a=0 (mod x). a = xc.

b*x = a* = (xc)* = x*c*

b? = Xz—lcz

b=0 (mod x). By Lemma a=0 (mod x).

AH-HA! x divides both a and b. So a, b not in lowest terms.
Contradiction!
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The Hard Part is The Lemma

For proofs of irrationality using mods:
1. The lemma is the only part that is not a template.
2. The lemma may have a lot of cases.

3. If you are trying to prove a rational is irrational, the proof will
fall apart in the lemma.
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Proving 7'/3 ¢ Q Using UFT

Want 71/3 ¢ Q. Assume, BWOC that

1/3 _
73 =2
b7'/3 =a
763 = 33
Factor both sides. p1,...,p is the set of primes that divide a or b.
b=p>... pht
LA
St bt a3
7p1 1...pL L :plal...pLaL

The number of 7's on the LHS is =1 (mod 3).
The number of 7's on the RHS is =0 (mod 3).
Contradiction.
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Proving Irrationality Using UFT

These proofs also have a very definite template.

On HWO5 you will do this proof for ,/p.
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Primes are Infinite

Theorem The number of primes is infinite.

Assume, BWOC, that the number of primes is finite.

Let p1,...,p. be ALL of the primes.

Consider the number N = p;---p; + 1.

Case 1 N is prime. Then since (Vi)[p; < N] N is a prime NOT on
the list of ALL primes. Contradiction.

Case 2 N is not prime. Let p be a prime factor of N.

p cannot be any of the p; since none of them divide N.

p is a prime NOT on the list of ALL primes. Contradiction.



