

- 1. (0 points) READ the NOTES on SECRET SHARING
- 2. (30 points) Assume there is already a fast procedure to TEST if a number is prime. Call it TEST(n).
 - (a) (15 points) Write psuedocode for an algorithm that, on input N, finds a SAFE prime between N and 2N and SKIPS any number n that is divisible by 2, 3, or 5.
 - (b) (15 points) In your code for Part 1 you should have tested if (n-1)/2 was prime to ensure that n was a safe prime. You may have ended up testing numbers of this form that are divisible by 2,3, or 5. SO lets make it faster: Write pseudocode for an algorithm that, on input N, finds a SAFE prime between N and 2N and SKIPS at any number n such that n is divisible by 2, 3, or 5 OR such that (n-1)/2 is divisible by 2, 3, or 5.
- 3. (OPTIONAL) Zelda wants to share a secret s with A_1, \ldots, A_{n+1} so that
 - A_1 and A_2 can determine the secret,
 - A_2 and A_3 can determine the secret,
 - A_3 and A_4 can determine the secret,
 - :
 - A_n and A_{n+1} can determine the secret.

Zelda uses the Random String Method.

- (a) Explain what Zelda does.
- (b) For any particular $i \in \{1, ..., n+1\}$ how many random strings does A_i get?

GO TO NEXT PAGE!

- 4. (OPTIONAL) Zelda has a secret s in the integers mod 13 and she wants to give shares to A_1, \ldots, A_{10} such that
 - If A_1, A_2 and ANY three of $\{A_3, \ldots, A_{10}\}$ get together then they can find out the secret, but NO two can.
 - Each person gets ONE string of length s.
 - The scheme is information-theoretic secure.

Explain how Zelda can do this.

- 5. (40 points) Zelda has a secret and she wants to use the polynomial method over mod 17. She wants to share it with A_1, \ldots, A_6 such that if 4 of them get together they can find out the secret but if 3 of them get together they cannot. She wants to give everyone one share in $\{0, \ldots, 16\}$. Recall that she gives $A_i f(i)$. We present different scenarios.
 - (a) A_1 has 2, A_2 has 5, A_3 has 10. If they get together then can they determine the secret? If so then say how, if not then say why not. (HINT- this does NOT involve a lot of calculation.)
 - (b) A_1 has 2, A_2 has 5, A_3 has 10, A_4 has 0. If they get together then can they determine the secret? If so then say how, if not then say why not. (HINT- this does NOT involve a lot of calculation.)
 - (c) A_1 has 1, A_2 has 1, A_3 has 1, A_4 has 1. Has something gone wrong? Gee they all have the same number! If something has gone wrong then what is it. If not then determine the secret. (HINT- this does NOT involve a lot of calculation.)
 - (d) A_1 has 0, A_2 has 0, A_3 has 0, A_4 has 0. Has something gone wrong? Gee they all have the same number! If something has gone wrong then what is it. If not then determine the secret. (HINT- this does NOT involve a lot of calculation.)

GO TO NEXT PAGE!

6. (30 points) Zelda has used polynomial secret sharing with A_1, \ldots, A_9 such that any two together can learn the secret, but one person alone cannot. She does this over mod 7. A_1 and A_2 get together! They plan to have A_1 reveal and then A_2 reveal.

A_2 is dishonest!

 A_1 reveals his share and its 6. A_2 wants to lie and reveal a share so that A_1 thinks the secret is 3. Can he do this? If so then say what he reveals, and if not then show why not.