6. **CTL$_{F,G,X}$ LAB EXERCISES FOR APRIL 1, 2014**

Exercise 4 (A familiar automaton). Consider the automaton in Figure 7.

![Fig. 7. A simple automaton.](image)

Using the algorithm, compute the set of states that satisfies $AF[p]$.

Exercise 5 (Anamolies in satisfaction). Consider the two automata G_1 and G_2 in Figure 8.

![Fig. 8. Two gate models G_1 and G_2.](image)

First, compute the set of states in G_1 that satisfy the formula $AG[down \rightarrow AF[up]]$. Now show that in model G_2, $up \models AG[down \rightarrow AF[up]]$.

Next, give a $CTL_{F,G,X}$ property that up in G_1 satisfies but up in G_2 does not satisfy.

Exercise 6 (Examining another automaton). Consider the automaton in Figure 9.

![Fig. 9. Another automaton.](image)

Compute the set of states that satisfies $AF[q]$. Now compute the set of states that satisfies $EF[q]$.