HW 12 CMSC 452. Morally Due May 1 HW IS TWO PAGES! SOLUTIONS

- 1. (5 points) What is your name? Write it clearly. Staple the HW.
- 2. (20 points) Let $A \in NP$. Let p_1, p_2 and B be such that:

$$A = \{x : (\exists y)[|y| = p_1(|x|) \land (x, y) \in B\}$$

where B is in $DTIME(p_2(n))$. B is computed by a Turing machine that has 6 symbols in the alphabet and 10 states.

Let x be an string of length n. Using the Cook-Levin Theorem, I can come up with a FORMULA ϕ such that

 $x \in A$ iff $\phi \in SAT$.

How many variables does ϕ have?

SOLUTION TO PROBLEM TWO

The Cook-Levin reduction assumes that the TM runs on the string

x # y which is of length $n + p_1(n)$.

The computation runs in time $p_2(n + p_1(n))$.

Hence we have a table that is $(n + p_1(n))(p_2(n + p(1(n))))$.

For each entry of the table I have the variables

 $z_{ij\sigma}$ where $\sigma \in \Sigma \cup Q \times \Sigma$

There are $6 + (6 \times 10) = 66$ possible σ . Hence the number of variables is

 $\begin{array}{c} 66(n+p_1(n))(p_2(n+p(1(n))).\\ \textbf{END OF SOLUTION TO PROBLEM TWO} \end{array}$

3. (20 points) Write down the part of the Cook-Levin Formula that corresponds to the transition:

 $\delta(q,a) = (p,b)$

i.e. the head does not move and prints a 'b' SOLUTION TO PROBLEM THREE

 $z_{i,j,(q,a)} \implies z_{i,j+1,(p,b)}$

KEY is that since the head does not move, nothing else changes. END OF SOLUTION TO PROBLEM THREE

4. (30 points) Show that if $A \leq B$ and $B \leq C$ then $A \leq C$. SOLUTION TO PROBLEM FOUR

Assume $A \leq B$ via TM M_1 that runs in $p_1(n)$ time, p_1 a poly. Assume $B \leq C$ via TM M_2 that runs in $p_2(n)$ time, p_2 a poly. The following is a reduction $A \leq C$

- (a) Input(x)
- (b) Run $M_1(x)$ to find y' (this takes $p_1(|x|)$ steps. Note that $|y'| \le p(|x|)$).
- (c) Run $M_2(y_1)$ to find y (this take $p_2(|y'|) \le p_2(p_1(|x|)))$.
- (d) Output y.

 $x \in A$ iff $y' \in B$ iff $y \in C$.

The procedure takes $p_2(p_1(|x|))$ steps which is a polynomial. END OF SOLUTION TO PROBLEM FOUR 5. (30 points) Let

 $COL_{2} = \{G : G \text{ is } 2\text{-colorable } \}$ $COL_{3} = \{G : G \text{ is } 3\text{-colorable } \}$ $COL_{4} = \{G : G \text{ is } 4\text{-colorable } \}$ $COL_{5} = \{G : G \text{ is } 5\text{-colorable } \}$ $PCOL_{2} = \{G : G \text{ is } \text{Planar and } 2\text{-colorable } \}$ $PCOL_{3} = \{G : G \text{ is } \text{Planar and } 3\text{-colorable } \}$ $PCOL_{4} = \{G : G \text{ is } \text{Planar and } 4\text{-colorable } \}$ $PCOL_{5} = \{G : G \text{ is } \text{Planar and } 5\text{-colorable } \}$

For each statement below you must answer TRUE or FALSE and *explain why.* You may assume the following: (1) $P \neq NP$, (2) COL_3 is NP-complete, (3) $PCOL_3$ is NP-complete, (4) SAT is NP-complete, (5) 3-SAT is NP-complete, (6) every planar graph is 4-colorable, (7) if $A \leq B$ and $B \leq C$ then $A \leq C$.

As usual, $A \leq B$ means that there is a function f computable in poly time such that, for all x

$$x \in A$$
 iff $f(x) \in B$

- (a) $COL_2 \leq COL_3$
- (b) $COL_3 \leq COL_2$
- (c) $COL_3 \leq COL_4$
- (d) $COL_4 \leq COL_3$
- (e) $PCOL_3 \leq COL_4$
- (f) $COL_3 \leq PCOL_4$

SOLUTION TO PROBLEM FIVE

- (a) $COL_2 \leq COL_3$: TRUE. $COL_2 \in P$. Anything in P is \leq anything.
- (b) $COL_3 \leq COL_2$: FALSE. Since $COL_2 \in P$, if this was true then $COL_3 \in P$ but we are assuming $P \neq NP$.

- (c) $COL_3 \leq COL_4$: TRUE. The reduction is easy: given G, let G' be G with one more vertex added and connected to all vertices. G is 3-colorable IFF G' is 3-colorable.
- (d) $COL_4 \leq COL_3$: TRUE. The reduction is INSANE: By Cook-Levin theorem $COL_4 \leq SAT$. By COL_3 being NP-complete, $SAT \leq COL_3$. Since reductions are transitive, $COL_4 \leq COL_3$.
- (e) $COL_3 \leq PCOL_4$. FALSE. $PCOL_4$ is in P since ALL graphs are 4-colorable. If true this would imply P = NP.

END OF SOLUTION TO PROBLEM FIVE