Good but still Exp Algorithms for 3-SAT

Exposition by William Gasarch

Credit Where Credit is Due

This talk is based on parts of the following AWESOME books:

The Satisfiability Problem SAT, Algorithms and Analyzes by
Uwe Schoning and Jacobo Torán

Exact Exponential Algorithms
by
Fedor Formin and Dieter Kratsch

OUR GOAL

We will show algorithms for 3SAT that

- 1. Run in time $O(\alpha^n)$ for various $\alpha < 1$. Some will be randomized algorithms. NOTE: By $O(\alpha^n)$ we really mean $O(p(n)\alpha^n)$ where p is a poly. We ignore such factors.
- 2. Quite likely run even better in practice, or modifications of them do.

2SAT

2SAT is in P:

Convention For All of our Algorithms

Definition:

- 1. A *Unit Clause* is a clause with only one literal in it.
- 2. A *Pure Literal* is a literal that only shows up as non negated or only shows up as negated.

Conventions:

- 1. If have unit clause assign its literal to TRUE.
- 2. If have POS-pure literal then assign it to be TRUE.
- 3. If have NEG-pure literal then assign it to be FALSE.
- 4. If we have a partial assignment z.
 - **4.1** If $(\forall C)[C(z) = TRUE \text{ then output YES.}$
 - **4.2** If $(\exists C)[C(z) = FALSE]$ then output NO.

CONVENTION: Abbreviate this STAND (for STANDARD).

DPLL ALGORITHM

```
DPLL (Davis-Putnam-Logemann-Loveland) ALGORITHM ALG(F: 3CNF fml; z: Partial Assignment) STAND Pick a variable x (VERY CLEVERLY) ALG(F; z \cup \{x = T\}) ALG(F; z \cup \{x = F\})
```

Key Idea Behind Recursive 7-ALG

KEY1: If F is a 3CNF formula and z is a partial assignment either

- 1. F(z) = TRUE, or
- 2. there is a clause $C = (L_1 \vee L_2)$ or $(L_1 \vee L_2 \vee L_3)$ that is not satisfied. (We assume $C = (L_1 \vee L_2 \vee L_3)$.)

KEY2: In ANY extension of z to a satisfying assignment ONE of the 7 ways to make $(L_1 \lor L_2 \lor L_3)$ true must happen.

Recursive-7 ALG

```
ALG(F: 3CNF fml; z: Partial Assignment)

STAND

if F(z) in 2CNF use 2SAT ALG

find C = (L_1 \lor L_2 \lor L_3) a clause not satisfied

for all 7 ways to set (L_1, L_2, L_3) so that C=TRUE

Let z' be z extended by that setting

ALG(F; z')

T(n) = 7T(n-3) so T(n) = O((1.913)^n)
```

GOOD NEWS/BAD NEWS

- 1. Good News: BROKE the 2^n barrier. Hope for the future!
- 2. Bad News: Still not that good a bound.
- 3. Good News: Similar ideas gets time to $O((1.84)^n)$.
- 4. Bad News: Still not that good a bound.

IDEAS

Definition: If F is a fml and z is a partial assignment then z is COOL if every clause that z affects is made TRUE. Lemma: Let F be a 3CNF fml and z be a partial assignment.

- **1**. If z is COOL then $F \in 3SAT$ iff $F(z) \in 3SAT$.
- 2. If z is NOT COOL then F(z) will have a clause of length 2.

Recursive-3 ALG MODIFIED MORE

```
ALG(F: 3CNF fml, z: partial assignment)
COMMENT: This slide is when a 2CNF clause not satis
STAND
if (\exists C = (L_1 \lor L_2) not satisfied then
       z1 = z \cup \{L_1 = T\}
       if z1 is COOL then ALG(F; z1)
else
            z01 = z \cup \{L_1 = F, L_2 = T\}
            if z01 is COOL then ALG(F; z01)
                else
                   ALG(F; z1)
                   ALG(F; z01)
else (COMMENT: The ELSE is on next slide.)
```

Recursive-3 ALG MODIFIED MORE

```
(COMMENT: This slide is when a 3CNF clause not sati
if (\exists C = (L_1 \lor L_2 \lor L_3) not satisfied then
       z1 = z \cup \{L_1 = T\}
        if z1 is COOL then ALG(F; z1)
else
            z01 = z \cup \{L_1 = F, L_2 = T\}
             if z01 is COOL then ALG(F; z01)
                 else
                   z001 = z \cup \{L_1 = F, L_2 = F, L_3 = T\}
                   if z001 is COOL then ALG(F; z001)
                       else
                         ALG(F; z1)
                         ALG(F; z01)
                         ALG(F: z001)
```

IS IT BETTER?

VOTE: IS THIS BETTER THAN $O((1.84)^n)$?

IS IT BETTER?

VOTE: IS THIS BETTER THAN $O((1.84)^n)$? **IT IS!**

IT IS BETTER!

KEY1: If any of z1, z01, z001 are COOL then only ONE recursion: T(n) = T(n-1) + O(1).

KEY2: If NONE of the z0, z01 z001 are COOL then ALL of the recurrences are on fml's with a 2CNF clause in it.

T(n)= Time alg takes on 3CNF formulas.

T'(n)= Time alg takes on 3CNF formulas that have a 2CNF in them.

$$T(n) = \max\{T(n-1), T'(n-1) + T'(n-2) + T'(n-3)\}.$$

 $T'(n) = \max\{T(n-1), T'(n-1) + T'(n-2)\}.$

Can show that worst case is:

$$T(n) = T'(n-1) + T'(n-2) + T'(n-3).$$

 $T'(n) = T'(n-1) + T'(n-2).$

The Analysis

$$T'(0) = O(1)$$

 $T'(n) = T'(n-1) + T'(n-2).$
 $T'(n) = O((1.618)^n).$

So

$$T(n) = O(T(n)) = O((1.618)^n).$$

VOTE: Is better known?

VOTE: Is there a proof that *these techniques* cannot do any better?

Hamming Distances

Definition If x, y are assignments then d(x, y) is the number of bits they differ on.

KEY TO NEXT ALGORITHM: If F is a fml on *n* variables and F is satisfiable then either

- 1. F has a satisfying assignment z with $d(z, 0^n) \le n/2$, or
- 2. F has a satisfying assignment z with $d(z, 1^n) \le n/2$.

HAM ALG

```
\mathsf{HAMALG}(F: \mathsf{3CNF} \mathsf{fml}, z: \mathsf{full} \mathsf{assignment}, h: \mathsf{number}) \mathsf{h} \mathsf{bounds}
d(z, s) where s is SATisfying assignment h is distance
STAND
if \exists C = (L_1 \lor L_2) not satisfied then
          ALG(F; z \oplus \{L_1 = T\}; h - 1\}
          ALG(F; z \oplus \{L_1 = F, L_2 = T\}; h - 1)
if \exists C = (L_1 \lor L_2 \lor L_3) not satisfied then
          ALG(F; z \oplus \{L_1 = T\}; h - 1)
          ALG(F; z \oplus \{L_1 = F, L_2 = T\}; h - 1)
          ALG(F; z \oplus \{L_1 = F, L_2 = F, L_3 = T\}; h-1)
```

REAL ALG

```
\mathsf{HAMALG}(F; 0^n; n/2)
If returned NO then \mathsf{HAMALG}(F; 1^n; n/2)
```

VOTE: IS THIS BETTER THAN $O((1.61)^n)$?

REAL ALG

```
HAMALG(F; 0^n; n/2)
If returned NO then HAMALG(F; 1^n; n/2)
VOTE: IS THIS BETTER THAN O((1.61)^n)?
IT IS NOT! It is O((1.73)^n).
```

KEY TO HAM

KEY TO HAM ALGORITHM: Every element of $\{0,1\}^n$ is within n/2 of either 0^n or 1^n

Definition: A covering code of $\{0,1\}^n$ of SIZE s with RADIUS h is a set $S \subseteq \{0,1\}^n$ of size s such that

$$(\forall x \in \{0,1\}^n)(\exists y \in S)[d(x,y) \leq h].$$

Example: $\{0^n, 1^n\}$ is a covering code of SIZE 2 of RADIUS n/2.

ASSUME ALG

```
Assume we have a Covering code of \{0,1\}^n of size s and radius h.
Let Covering code be S = \{v_1, \dots, v_s\}.
i = 1
FOUND=FALSE
while (FOUND=FALSE) and (i \le s)
   HAMALG(F; v_i; h)
    If returned YES then FOUND=TRUE
        else
          i = i + 1
end while
```

ANALYSIS OF ALG

Each iteration satisfies recurrence

$$T(0) = 1$$

$$T(h) = 3T(h-1)$$

$$T(h) = 3^h$$
.

And we do this s times.

ANALYSIS: $O(s3^h)$.

Need covering codes with small value of $O(s3^h)$.

IN SEARCH OF A GOOD COVERING CODE

RECAP: Need covering codes of size s, radius h, with small value of $O(s3^h)$.

IN SEARCH OF A GOOD COVERING CODE

RECAP: Need covering codes of size s, radius h, with small value of $O(s3^h)$.

THATS NOT ENOUGH: We need to actually CONSTRUCT the covering code in good time.

IN SEARCH OF A GOOD COVERING CODE

RECAP: Need covering codes of size s, radius h, with small value of $O(s3^h)$.

THATS NOT ENOUGH: We need to actually CONSTRUCT the covering code in good time.

YOU" VE BEEN PUNKED: We'll just pick a RANDOM subset of $\{0,1\}^n$ and hope that it works.

IN SEARCH OF A GOOD COVERING CODE- RANDOM!

CAN find with high prob a covering code with

- ightharpoonup Size $s = n^2 2^{.4063n}$
- ▶ Distance h = 0.25n.

Can use to get SAT in $O((1.5)^n)$.

Note: Best known: $O((1.306)^n)$.

Summary

- 1. There is an $O((1.913)^n)$ alg for 3-SAT.
- 2. There is an $O((1.84)^n)$ alg for 3-SAT.
- 3. There is an $O((1.618)^n)$ alg for 3-SAT.
- 4. There is an $O((1.306)^n)$ alg for 3-SAT (randomized).

Relevant to Ontologix?

Relevant: These algorithms work better in practice then their worst case run-times.

Not Relevant: The real world is *k*-Sat, not 3-Sat.

Relevant: Good to get new ideas and see how other people think about things (kind of the whole purpose of my visit!)