
HW 8 CMSC 452. Morally Due April 23
THIS HW IS TWO PAGES LONG!!!!!!!!!

SOLUTIONS

1. (30 points) A poly inequality is an inequality of the form

p(x1, x2, . . . , xn) ≤ c

where p(x1, . . . , xn) is a polynomial with integer coefficients WITHOUT
a constant term, and c ∈ Z.

TWO EXAMPLES:

x31x
2
4 − 2x2x3 + 18x143 x

2
4 + x1 ≤ 1000.

x1 + x2 ≤ 89

Let POLY PROGRAMMING, called PP , be the following problem:

Given a set of poly inequalities determine if there is some way to set
the variables to rationals so that all the inequalities hold.

(a) Show that 3-SAT ≤ PP .

(b) Use your reduction on the following formula (i.e., list the inequal-
ities produced by the reduction)

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ ¬x4)

GO TO THE NEXT PAGE!!!!!!!!!!!!

1



SOLUTION TO PROBLEM ONE

(a) Given a formula φ(x1, . . . , xn) output the following constraints

• For all i, x2i − xi ≤ 0 and x2i − xi ≥ 0. Hence we have x2i = xi
so xi = 0 or xi = 1.

• We now just use the same constraints based on clauses that
we did for IP. For each clause (L1 ∨L2 ∨L3) do the following:
If Li is a variable (not a negation of one) then let Mi be that
variable (e.g., x18). If Li is a negation of a variable then let
Mi be 1− that variable, (e.g., 1− x18).
Add the following linear inequality to the constraints:

M1 +M2 +M3 ≥ 1

(b) We first write the equations as they occur naturally, and then we
put them in the right form.

x21 − x1 ≤ 0

x21 − x1 ≥ 0: REWRITE −x21 + x1 ≤ 0

x22 − x2 ≤ 0

x22 − x2 ≥ 0: REWRITE −x22 + x2 ≤ 0

x23 − x3 ≤ 0

x23 − x3 ≥ 0: REWRITE −x23 + x3 ≤ 0

x24 − x4 ≤ 0

x24 − x4 ≥ 0: REWRITE −x24 + x4 ≤ 0

x1 + (1− x2) + x3 ≥ 1: REWRITE −x1 + x2 − x3 ≤ 0

(1− x1) + x2 + x4 ≥ 1: REWRITE x1 − x2 − x4 ≤ 0

x2 + (1− x3) + (1− x4) ≥ 1: REWRITE −x2 + x3 + x4 ≤ 1

2. (40 points) Let

CLIQ17 = {G | graph G has a clique of size 17 }

(a) (25 points) Either show that CLIQ17 is in P or show that CLIQ17
is NP-complete or do both. (ALSO — not to hand in, but think
about — is it likely that someone in the class will be able to do
both?)

2



(b) (25 points) Is CLIQ17 closed under minors (see Wikipedia entry
for clarification). That is, if G ∈ CLIQ17 and H is a minor of G,
is it necessarily true that H ∈ CLIQ17? If so then prove it, if not
then give a counterexample.

https://en.wikipedia.org/wiki/Graph_minor

SOLUTION TO PROBLEM TWO

a) CLIQ17 is in P:

• Input G

• For ALL sets of vertices of size 17 check if they form a clique. If
any do then output YES, else NO.

This is in poly time since the number of sets of cliques to check is(
n
17

)
≤ n17.

THINK ABOUT PART: if someone proved that CLIQ17 was both in
P and NP-complete then this would imply P = NP . This is unlikely
to be true and unlikely to be proven by anyone at this time. But HEY
— you never know!

b) CLIQ17 is NOT closed under minors. Take K17. It is IN CLIQ17.
Remove one vertex. Now it is K16 which is NOT in CLIQ17.

3. (30 points) Let

FACT = {(n, x) | there is a nontrivial factor of n that is ≤ x }.

(A NONTRIVIAL factor of n is a positive factor that is NOT 1 and
NOT n.)

n and x are both positive integers and are given in binary, so the
NUMBER (say, for example) ONE THOUSAND only takes around 10
bits, NOT 1000 bits, to input.

Let FFACT be the function that, on input n, outputs the complete
prime factorization of n.

Show that if FACT ∈ P then FFACT can be computed in Polynomial
time.

3

https://en.wikipedia.org/wiki/Graph_minor


NOTE- poly in the LENGTH of the input. So the LENGTH of ONE
THOUSAND would be TEN. So FACT ∈ P means that it takes time
p(log n+ log x) to decide (n, x) for some poly p.

SOLUTION TO PROBLEM THREE

Note that if n has a nontrivial factor then it has one ≤ d
√
ne. We use

this. If you used n instead, that would be fine also.

Assume FACT ∈ P .

ALGORITHM FOR FFACT. We will be calling it recursively.

(a) Input n (assume n > 1)

(b) Ask (n, d
√
ne) ∈ FACT? If NO then n is prime so output n.

(c) If we got here then (n, d
√
ne) ∈ FACT . So we know there is a non-

trivial factor of n between 2 and d
√
ne. Do a binary search using

queries to FFACT to find the LEAST such factor m1. The number
of queries is O(log

√
n) = O(log n). Each one takes O(p(log n))

steps. So O(log(n) · p(log n)) time is taken.

(d) Note that m1 is prime, and m2 = n/m1 is an integer.

(e) Call FFACT on m2. Output m1 in addition to the factorization
of m2 produced.

There will be only O(log n) recursive calls to FFACT. Hence, the total
running time is O(log(n)2 · p(log n)), which is polynomial in terms of
log n.

4


