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1 Introduction
We give the constructions that show sketch the proof that all if L1 and L2 are regular and
L1 ∩ L2, L1 ∪ L2, L, and proj(L) (which we will define) are regular.

Def 1.1 A DFA is a tuple (Q,Σ, δ, s, F ) where δ : Q× Σ→ Q.

We define running a DFA M on a string x in the obvious way. If the DFA ends in a state
in F then x is accepted. Otherwise its rejected.

2 Closure Under Intersection
Theorem 2.1 If L1 and L2 are regular then L1 ∩ L2 is regular.

Proof:
Let M1 = (Q1,Σ, δ1, s1, F1) be the DFA for L1. Let M2 = (Q2,Σ, δ2, s2, F2) be the DFA

for L2.
We define a DFA for L1∩L2. Let M = (Q1×Q2,Σ, δ, (s1, s2), F1×F2) where δ is defines

by, for (q1, q2) ∈ Q1 ×Q2 and σ ∈ Σ,

δ((q1, q2), σ) = (δ1(q1, σ), δ2(q2, σ)).
The intuition is that the DFA M runs M1 and M2 at the same time. If both end up in

F1 × F2 then both M1 and M2 accepted.

3 Closure Under Union
Theorem 3.1 If L1 and L2 are regular then L1 ∪ L2 is regular.

Proof:
Let M1 = (Q1,Σ, δ1, s1, F1) be the DFA for L1. Let M2 = (Q2,Σ, δ2, s2, F2) be the DFA

for L2.
We define a DFA for L1 ∪L2. Let M = (Q1×Q2,Σ, δ, (s1, s2), F1×Q2 ∪Q1×F2) where

δ is defines by, for (q1, q2) ∈ Q1 ×Q2 and σ ∈ Σ,

δ((q1, q2), σ) = (δ1(q1, σ), δ2(q2, σ)).
The intuition is that the DFA M runs M1 and M2 at the same time. If M1 ends up in

F1 then we accept (independent of what M2 does), and if M2 ends up in F2 then we accept
(independent of what M1 does).
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4 Closure Under Complementation
Theorem 4.1 If L is regular then L is regular.

Proof:
Let M = (Q,Σ, δ, s, F ) be the DFA for L.
We define a DFA for L. LetM ′ = (Q,Σ, δ, s, Q−F ) (recall that Q−F = {q | q ∈ Q∧q /∈

F}.
The intuition is that the DFA M ′ runs M but does the opposite when it comes to

accepting.

5 Closure Under Complimentation
To Compliment a DFA you say

DFA, I admire your states!

6 NDFA’s and DFA’s
Recall the definition of an NDFA:

Def 6.1 An NDFA is a tuple (Q,Σ,∆, s, F ) where ∆ : Q × (Σ ∪ e) → 2Q. (Recall that 2Q

is the powerset of Q.

We DO NOT define running an NDFA M on a string x. Instead we say that an NDFA
accepts x if SOME way of running the machine ends up in a state in F .

Theorem 6.2 If L is accepted by an NDFA then there exists a DFA such that accepts L.

Proof: Let M = (Q,Σ,∆, s, F ) be the NDFA for L.
We define a DFA for L. Let M ′ = (2Q,Σ, δ, s,F) where for A ∈ 2Q and σ ∈ Σ,

δ(A, σ) =
⋃

q∈A

∆(eaqeb, σ)

(The ea and eb are strings of the empty string.)

F = {A | A ∩ F 6= ∅}
The intuition is that the DFAM ′ runs ALL possibilities forM . If SOME possibility ends

up accepting, then accept.
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7 Closure under Projection
Notation 7.1 LetΣ = {0, 1}n. Note that each element of Σ is itself a string of n bits. If
x ∈ Σ∗ then proj(x) is what you get by taking each symbol in x and chopping off the last
bit. So if x ∈ ({0, 1}n)∗ then proj(x) ∈ ({0, 1}n−1)∗. If L ⊆ ({0, 1}n)∗ then

proj(L) = {proj(x) | x ∈ L}.

Theorem 7.2 If L is regular than proj(L) is regular.

Proof: Let M = (Q, ({0, 1}n), δ, s, F ) be the DFA for L.
We define an NDFA for L. LetM ′ = (Q, {0, 1}n−1,∆, s, F ) . For q ∈ Q and σ ∈ {0, 1}n−1

∆(q, σ) = {δ(q, σ0), δ(q, σ1)}.

8 Closure under Concatenation
Theorem 8.1 If L1 and L2 are regular then L1L2 is regular.

Proof:
Let M1 = (Q1,Σ, δ1, s1, F1) be the DFA for L1. Let M2 = (Q2,Σ, δ2, s2, F2) be the DFA

for L2. By relabelling we can assume Q1 ∩Q2 = ∅.
We define an NDFA for L1L2. By Theorem 6.2 we could then obtain a DFA for L1L2.
Let M = (Q1 ∪Q2,Σ, δ, s1, F2) where δ is defines as follows:

• If q1 ∈ Q1 and σ ∈ Σ then δ(q1, σ) = δ1(q1, σ).

• If q2 ∈ Q2 and σ ∈ Σ then δ(q2, σ) = δ2(q2, σ).

• If f1 ∈ F1 then δ(f1, e) = s2

The intuition is that the NDFA M runs M1 and then nondeterministically hops to M2.
But the hop must be from f1 ∈ F1 to s2 ∈ Q2 and then the M2 must accept, so if w is
accepted there must be SOME WAY to divide it w = xy where x ∈ L1 and y ∈ L2.

9 Closure Under ∗
Theorem 9.1 If L is regular then L∗ is regular.

Proof:
Let M = (Q,Σ, δ, s, F ) be the DFA for L.
We define an NDFA for L∗. LEAVE AS AN EXERCISE.
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