
Good but still Exp Algorithms for 3-SAT

Exposition by William Gasarch

Credit Where Credit is Due

This talk is based on parts of the following AWESOME books:

The Satisfiability Problem SAT, Algorithms and Analyzes
by

Uwe Schoning and Jacobo Torán

Exact Exponential Algorithms
by

Fedor Formin and Dieter Kratsch

This Lecture is Out of Order!

Typical Order of topics:

1. Define P, NP, NP-complete.

2. NP-complete means Probably Hard (see next slide).

3. Prove SAT is NP-complete

4. Show some other problems NP-complete

5. Boo :-(These NP-complete problems are hard!

6. OH- there are some things you can do about that:
Approximations, clever techniques to make brute force a bit
better (this talk).

Usually the last item is an afterthought in a course like this.
So why am I talking about this at the beginning of the
NP-complete section?

1) Its the basis for Project 2
2) NP-completeness is often presented as the end of the story, I
want to counter that.

This Lecture is Out of Order!

Typical Order of topics:

1. Define P, NP, NP-complete.

2. NP-complete means Probably Hard (see next slide).

3. Prove SAT is NP-complete

4. Show some other problems NP-complete

5. Boo :-(These NP-complete problems are hard!

6. OH- there are some things you can do about that:
Approximations, clever techniques to make brute force a bit
better (this talk).

Usually the last item is an afterthought in a course like this.
So why am I talking about this at the beginning of the
NP-complete section?
1) Its the basis for Project 2
2) NP-completeness is often presented as the end of the story, I
want to counter that.

PET Problems

One of the early names proposed for NP-complete problems
(before NP-complete became standard) was PET -problems. Why?
Now it stands for

Probably Exponential time

If P 6= NP is proven then it stands for
Provably Exponential time

If P = NP is proven then it stands for
Previously Exponential time

PET Problems

One of the early names proposed for NP-complete problems
(before NP-complete became standard) was PET -problems. Why?
Now it stands for

Probably Exponential time

If P 6= NP is proven then it stands for
Provably Exponential time

If P = NP is proven then it stands for
Previously Exponential time

PET Problems

One of the early names proposed for NP-complete problems
(before NP-complete became standard) was PET -problems. Why?
Now it stands for

Probably Exponential time

If P 6= NP is proven then it stands for
Provably Exponential time

If P = NP is proven then it stands for
Previously Exponential time

OUR GOAL

We will show algorithms for 3SAT that

1. Run in time O(αn) for various α > 1. Some will be
randomized algorithms.
NOTE: By O(αn) we really mean O(p(n)αn) where p is a
poly. We ignore such factors.

2. Quite likely run even better in practice, or modifications of
them do.

TRUE and FALSE in Formulas

Note: In terms of being satisfied:

(x1 ∨ x2 ∨ FALSE) ∧ (¬x1 ∨ x3) ≡ (x1 ∨ x2) ∧ (¬x1 ∨ x3)

Rule: FALSE can be removed. But see next example for caveat.

(FALSE ∨ FALSE ∨ FALSE) ∧ (¬x1 ∨ x3) ≡ FALSE

Rule: If all literals in a clause are FALSE then FALSE, so NOT
satisfiable.

(x1 ∨ x2 ∨ TRUE) ∧ (¬x1 ∨ x3) ≡ (¬x1 ∨ x3)

Rule: If TRUE is in a claue the entire clause can be removed.

2SAT

2SAT is in P:

Look this up yourself

Convention For All of our Algorithms

Example:

(x1) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ ¬x4) ∧ (¬x3)

Definition:

1. A Unit Clause is a clause with only one literal in it.
Examples: (x1) and (¬x3).

2. A Pure Literal is a literal that only shows up as non negated
or only shows up as negated.
Examples: x2 and ¬x4

3. A POS-Pure Literal is a pure literal that is a variable.
Example: x2

4. A NEG-Pure Literal is a pure literal that is a negation of a var.
Example: ¬x4

STAND Alg

Input(φ, z) where z is a partial assignment. Output is either YES
or NO or an easier equiv problem.

1. If every clause has ≤ 2 literals then run 2-SAT algorithm.

2. If φ has a unit clause C = {L} then extend z by setting L to
TRUE and output resulting formula and extended z .

3. If φ has POS-pure literal L then extend z by setting to L to
TRUE and output resulting formula and extended z .

4. If φ has NEG-pure literal ¬L then extend z by setting to L to
FALSE and output resulting formula and extended z .

5. If every clause has a literal in it that is set to TRUE then
output YES.

6. If there is some clause where every literal in it is set to FALSE
then output NO.

We will use algorithm STAND in all of our algorithms.

DPLL ALGORITHM

DPLL (Davis-Putnam-Logemann-Loveland) ALGORITHM

ALG(F : 3CNF fml; z : Partial Assignment)

STAND(F , z) (Base c a s e o f t he r e c u r s i v e a l g o r i t h m .)
P ick a v a r i a b l e x (VERY CLEVERLY !)
ALG(F ; z ∪ {x = T}) I f o u t p u t s YES then output YES .
ALG(F ; z ∪ {x = F}) I f o u t p u t s YES then output YES ,

o t h e r w i s e output NO

Note: Variants will involve setting more than one variable.

Key Idea ONE Behind Recursive 7-ALG

Example: Given formula φ that has as one of its clauses

(x1)

Then we KNOW that in a satisfying assignment cannot have

x1 = F

So even brute force can be a bit clever by NOT trying any
assignment that has x1 = F
(This case will never come up since STAND will take care of it.)

Key Idea TWO Behind Recursive 7-ALG

Example: Given formula φ that has as one of its clauses

(x1 ∨ x2)

Then we KNOW that in a satisfying assignment cannot have

x1 = F , x2 = F

So even brute force can be a bit clever by NOT trying any
assignment that has x1 = F , x2 = F

Key Idea THREE Behind Recursive 7-ALG

Example: Given formula φ that has as one of its clauses

(x1 ∨ x2 ∨ ¬x3)

Then we KNOW that in a satisfying assignment cannot have

x1 = F , x2 = F , x3 = T

So even brute force can be a bit clever by NOT trying any
assignment that has x1 = F , x2 = F , x3 = T

Key Idea Behind Recursive 7-ALG: One Shortcut

Example: Given formula φ and a partial assignment z . We want to
extend z to a satisfying assignment (or show we can’t). If φ has a
2-clause:

(x1 ∨ ¬x2)

So we will extend z by setting (x1, x2) to all possibilities EXCEPT

x1 = F , x2 = T

If there is a 2-clause then better to use it.

Recursive-7 ALG

ALG(F : 3CNF fml; z : Partial Assignment)

STAND
Two Cases :

(1) E x i s t s a 2− c l a u s e : Case 1 , n e x t s l i d e .
(2) A l l 3− c l a u s e s : Case 2 , n e x t n e x t s l i d e

Next Two s l i d e s .

Recursive-7 ALG: Case 1

There i s a c l a u s e C = (L1 ∨ L2)
Let z1, z2, z3 be th e 3 ways

to s e t (L1, L2) so t h a t C i s t r u e
ALG(F ; z1) I f r e t u r n s YES , then YES .
ALG(F ; z2) I f r e t u r n s YES , then YES .
ALG(F ; z3) I f r e t u r n s YES , then YES ,

e l s e NO.

Note: In this case get T (n) = 3T (n − 2).

Bounding the Recurrence

T (1) = 1 if only one var then easy to check if SAT or not

T (n) = 3T (n − 3)

GUESS that T (n) = αn for some α

αn = 3αn−3

α3 = 3

α =
√

3 ∼ 1.73
SO

T (n) = O((
√

3)n) ∼ O((1.73)n).

But only if always find a 2-clause. Unlikely.

Recursive-7 ALG: Case 2

There i s a c l a u s e C = (L1 ∨ L2 ∨ L3)
Let z1, . . . , z7 be th e 7 ways

to s e t (L1, L2, L3) so t h a t C i s t r u e
ALG(F ; z1) I f r e t u r n s YES , then YES .
ALG(F ; z2) I f r e t u r n s YES , then YES .
ALG(F ; z3) I f r e t u r n s YES , then YES .
ALG(F ; z4) I f r e t u r n s YES , then YES .
ALG(F ; z5) I f r e t u r n s YES , then YES .
ALG(F ; z6) I f r e t u r n s YES , then YES .
ALG(F ; z7) I f r e t u r n s YES , then YES ,

e l s e NO.

Note: In this case get T (n) = 7T (n − 3). If always did this
T (n) = (71/3)n ∼ (1.91)n. Leave it to you to derive that. It might
be on the final.

GOOD NEWS/BAD NEWS

1. Good News: BROKE the 2n barrier. Hope for the future!

2. Bad News: Still not that good a bound.

3. Good News: Similar ideas gets time to O((1.84)n).

4. Bad News: Still not that good a bound.

5. Good News: The above algorithm is basis for your project 2.

6. Bad News: The rest of this talk is not used for your project 2.

COOL Partial Assignments

Definition: If F is a fml and z is a partial assignment then z is
COOL if every clause that z affects is made TRUE.
Example:

(x1) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ x4) ∧ (¬x3)

(x2, x4) = (F ,F) is COOL: clauses that have any of {x2, x4} are
TRUE.

Lemma One about Coolness

Lemma One: Let F be a 3CNF fml and z be a partial assignment.
If z is COOL then F ∈ 3SAT iff F (z) ∈ 3SAT .
Example:

(x1) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ x4) ∧ (¬x3)

(x2, x4) = (F ,F) is COOL: clauses that have any of {x2, x4} are
TRUE.
Plug in (x2, x4) = (F ,F) to get

(x1) ∧ (TRUE) ∧ (TRUE) ∧ (¬x3)

= x1 ∧ ¬x3
Now need this to be in SAT.

Point of Lemma One

Assume z is COOL.

If φ is satisfiable then there is a satisfying assignment that is an
extension of z .

Lemma Two about Coolness
Lemma Two: Let F be a 3CNF fml and z be a partial assignment.
If z is NOT COOL then F (z) will have a clause of length 2.
Example:

(x1) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ x4) ∧ (¬x3)

(x2, x4) = (F ,T) is NOT COOL: The clause ¬x1 ∨ x2 ∨ x4 is
affected and not made TRUE (also not made FALSE)
Plug in (x2, x4) = (F ,T) to get

(x1)∧ (¬x1 ∨ FALSE ∨¬TRUE)∧ (¬FALSE ∨ x3 ∨TRUE)∧ (¬x3)

(x1) ∧ (¬x1) ∧ (TRUE ∨ x3 ∨ TRUE) ∧ (¬x3)

(x1) ∧ (¬x1) ∧ (¬x3)

KEY: The clause that z did not make true now has LESS literals.

Point of Lemma Two

Assume z is NOT COOL.

If use z then some of the clauses become 2-clauses, making
formula simpler.

Recursive-3 ALG MODIFIED MORE

ALG(F : 3CNF fml, z : partial assignment)

STAND
i f (∃C = (L1 ∨ L2) then

z1 = z ∪ {L1 = T})
i f z1 i s COOL then ALG(F ; z1)

e l s e
z01 = z ∪ {L1 = F , L2 = T})
i f z01 i s COOL then ALG(F ; z01)

e l s e
ALG(F ; z1) (w i l l have 2− c l a u s e s)
ALG(F ; z01) (w i l l have 2− c l a u s e s)

e l s e (COMMENT: The ELSE i s on n e x t s l i d e .)

Recursive-3 ALG MODIFIED MORE

(COMMENT: This s l i d e i s when a 3CNF
c l a u s e not i s s a t i s f i e d .)

i f (∃C = (L1 ∨ L2 ∨ L3) then
z1 = z ∪ {L1 = T})
i f z1 i s COOL then ALG(F ; z1)

e l s e
z01 = z ∪ {L1 = F , L2 = T})
i f z01 i s COOL then ALG(F ; z01)

e l s e
z001 = z ∪ {L1 = F , L2 = F , L3 = T})
i f z001 i s COOL then ALG(F ; z001)

e l s e
ALG(F ; z1)
ALG(F ; z01)
ALG(F ; z001)

IS IT BETTER?

VOTE: IS THIS BETTER THAN O((1.84)n)?

IT IS!

IS IT BETTER?

VOTE: IS THIS BETTER THAN O((1.84)n)?
IT IS!

IT IS BETTER!

KEY1: If any of z1, z01, z001 are COOL then only ONE
recursion: T (n) = T (n − 1) + O(1).
KEY2: If NONE of the z1, z01 z001 are COOL then ALL of the
recurrences are on fml’s with a 2CNF clause in it.
T (n)= Time alg takes on 3CNF formulas.
T ′(n)= Time alg takes on 3CNF formulas that have a 2CNF in
them.
T (n) = max{T (n − 1),T ′(n − 1) + T ′(n − 2) + T ′(n − 3)}.
T ′(n) = max{T (n − 1),T ′(n − 1) + T ′(n − 2)}.
Can show that worst case is:
T (n) = T ′(n − 1) + T ′(n − 2) + T ′(n − 3).
T ′(n) = T ′(n − 1) + T ′(n − 2).

The Analysis

T ′(0) = O(1)
T ′(n) = T ′(n − 1) + T ′(n − 2).

T ′(n) = O((1.618)n).

So

T (n) = O(T ′(n)) = O((1.618)n).

VOTE: Is better known?
VOTE: Is there a proof that these techniques cannot do any
better?

We will do better, but not clear if using same techniques

The Analysis

T ′(0) = O(1)
T ′(n) = T ′(n − 1) + T ′(n − 2).

T ′(n) = O((1.618)n).

So

T (n) = O(T ′(n)) = O((1.618)n).

VOTE: Is better known?
VOTE: Is there a proof that these techniques cannot do any
better?
We will do better, but not clear if using same techniques

Hamming Distances

Definition If x , y are assignments then d(x , y) is the number of
bits they differ on.

KEY TO NEXT ALGORITHM: If F is a fml on n variables and F is
satisfiable then either

1. F has a satisfying assignment z with d(z , 0n) ≤ n/2, or

2. F has a satisfying assignment z with d(z , 1n) ≤ n/2.

HAM ALG

HAMALG(F : 3CNF fml, z : full assignment, h: number) h bounds
d(z , s) where s is SATisfying assignment

STAND
i f ∃C = (L1 ∨ L2) not s a t i s f i e d then

ALG(F ; z ⊕ {L1 = T}; h − 1}
ALG(F ; z ⊕ {L1 = F , L2 = T}; h − 2)

i f ∃C = (L1 ∨ L2 ∨ L3) not s a t i s f i e d then
ALG(F ; z ⊕ {L1 = T}; h − 1)
ALG(F ; z ⊕ {L1 = F , L2 = T}; h − 2)
ALG(F ; z ⊕ {L1 = F , L2 = F , L3 = T}; h − 3)

REAL ALG

HAMALG(F ; 0n ; n/2)
I f r e t u r n e d NO then HAMALG(F ; 1n ; n/2)

VOTE: IS THIS BETTER THAN O((1.61)n)?

IT IS NOT! It is O((1.73)n).

REAL ALG

HAMALG(F ; 0n ; n/2)
I f r e t u r n e d NO then HAMALG(F ; 1n ; n/2)

VOTE: IS THIS BETTER THAN O((1.61)n)?
IT IS NOT! It is O((1.73)n).

KEY TO HAM

KEY TO HAM ALGORITHM: Every element of {0, 1}n is within
n/2 of either 0n or 1n

Definition: A covering code of {0, 1}n of SIZE s with RADIUS h is
a set S ⊆ {0, 1}n of size s such that

(∀x ∈ {0, 1}n)(∃y ∈ S)[d(x , y) ≤ h].

Example: {0n, 1n} is a covering code of SIZE 2 of RADIUS n/2.

ASSUME ALG

Assume we have a Covering code of {0, 1}n of size s and radius h.
Let Covering code be S = {v1, . . . , vs}.

i = 1
FOUND=FALSE
w h i l e (FOUND=FALSE) and (i ≤ s)

HAMALG(F ; vi ; h)
I f r e t u r n e d YES then FOUND=TRUE

e l s e
i = i + 1

end w h i l e

ANALYSIS OF ALG

Each iteration satisfies recurrence
T (0) = 1
T (h) = 3T (h − 1)
T (h) = 3h.
And we do this s times.
ANALYSIS: O(s3h).
Need covering codes with small value of O(s3h).

IN SEARCH OF A GOOD COVERING CODE

RECAP: Need covering codes of size s, radius h, with small value
of O(s3h).

THAT’S NOT ENOUGH: We need to actually CONSTRUCT the
covering code in good time.
YOU’VE BEEN PUNKED: We’ll just pick a RANDOM subset of
{0, 1}n and hope that it works.

IN SEARCH OF A GOOD COVERING CODE

RECAP: Need covering codes of size s, radius h, with small value
of O(s3h).
THAT’S NOT ENOUGH: We need to actually CONSTRUCT the
covering code in good time.

YOU’VE BEEN PUNKED: We’ll just pick a RANDOM subset of
{0, 1}n and hope that it works.

IN SEARCH OF A GOOD COVERING CODE

RECAP: Need covering codes of size s, radius h, with small value
of O(s3h).
THAT’S NOT ENOUGH: We need to actually CONSTRUCT the
covering code in good time.
YOU’VE BEEN PUNKED: We’ll just pick a RANDOM subset of
{0, 1}n and hope that it works.

IN SEARCH OF A GOOD COVERING CODE- RANDOM!

CAN find with high prob a covering code with

I Size s = n22.4063n

I Distance h = 0.25n.

Can use to get SAT in O((1.5)n).
Note: Best known: O((1.306)n).

Summary

1. There is an O((1.913)n) alg for 3-SAT.

2. There is an O((1.84)n) alg for 3-SAT.

3. There is an O((1.618)n) alg for 3-SAT.

4. There is an O((1.306)n) alg for 3-SAT (randomized).

1. These algorithms are for 3-SAT so not really used.

2. Similar ones ARE used in the real world.

3. There are some AWESOME SAT-Solvers in the real world.

4. Confronted with an NP-complete problem one strategy is to
reduce it to a SAT problem and use a SAT-solver.

Relevant to Ontologix?

(I gave this talk to a SAT-solving company, Ontologix.)
Relevant: These algorithms work better in practice then their
worst case run-times.

Not Relevant: The real world is k-Sat, not 3-Sat.

Relevant: Good to get new ideas and see how other people think
about things (kind of the whole purpose of my visit!)

