
Homework 9 Morally DUE May 5 at 11:00 AM
THIS HW IS TWO PAGES LONG!!!!!!!!!!!!!!!!!!

1. (35 points) Give the reduction 3COL ≤ CNF − SAT .

SOLUTION

We are given a graph G = (V,E).

We assume V = {1, . . . , n}.
For every vertex i we have 3 Boolean variables. We list them and what
they mean

xiR: T if COL(i) = R.

xiB: T if COL(i) = B.

xiB: T if COL(i) = G.

We now write down a formula in two parts

PART ONE: Making sure that a satisfying assignment really is a (not
necessarily proper) coloring

Every vertex has at least one color:

∧ni=1(xiR ∨ xiB ∨ xiG)

Every vertex has at most one color:

∧ni=1¬(xiR ∧ xiB) ∧ ¬(xiR ∧ xiG) ∧ ¬(xiB ∧ xiG)

PART TWO: Make sure it’s a proper coloring

∧(i,j)∈E¬(xiR ∧ xiR) ∧ ¬(xiB ∧ xiB) ∧ ¬(xiG ∧ xiG)

END OF SOLUTION

2. (35 points) We assume all Turing Machines have Σ = {1, 2, 3} and 3
is the # symbol. and the state set Q is an initial segment of N − {0}
(that is, it will be something like {1, 2, 3, 4}).

(a) (20 points) Describe a procedure to code Turing Machines into N
such that the following holds:
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• Two different Turing Machines map to different numbers.
(Though it is okay if some numbers do not get mapped to.)

• The following should be computable:
Input: x, y ∈ N
Output:
If x does not code a TM than output THATSBSMAN.
If x does code a TM than let it be Mx. Run Mx(y) (this might
diverge, and that’s fine.)

HINT- do not over think this. Any way you code a TM into
numbers should work.

(b) (15 points) Let M be the TM: Q = {1, 2, 3}, Σ = {1, 2, 3}, s = 1,
h = 3,

δ(1, 1) = (1, L).

δ(1, 2) = (1, 2).

δ(1, 3) = (2, R).

δ(2, 1) = (1, 1).

δ(2, 2) = (3, 3).

δ(2, 3) = (3, L).

Use your procedure to encode this into a number. Show your work
and give us your number. (If your number involves the product
of numbers, you need not multiply them together. For example,
if the above codes to 276 × 345 then you can leave it in that form
and not do the multiplication.)

SOLUTION ON NEXT PAGE
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SOLUTION

THE CODING:

Let M = (Q, {a, b,#}, δ, s, h)

The number will be the product of the following numbers

(a) 2|Q|.

(b) 3s (Recall that s, the start state, is a number)

(c) 5h (Recall that h, the halt state, is a number)

(d) there will be n = (Q−1)×Σ rules. Let p1, . . . , pn be the n primes
after 5 (so p1 = 7). (It’s Q − 1 since there are no transitions out
of h.) Order the rules lexicographically by Q× Σ, so

δ(1, 1)

δ(1, 2)

δ(1, 3)

δ(2, 1)

δ(2, 2)

δ(2, 3)
...

δ(|Q| − 1, 3).

For 1 ≤ i ≤ n take rule i and form the following number.

i. δ(p, σ) = (q, σ′) maps to 2p × 3σ × 5q × 7σ
′
. Note that σ′ ∈

{1, 2, 3}.
ii. δ(p, σ) = (q, L) maps to 2p × 3σ × 5q × 74. Note that 4 /∈
{1, 2, 3} so it won’t be confused with a symbol.

iii. δ(p, σ) = (q, R) maps to 2p × 3σ × 5q × 75. Note that 5 /∈
{1, 2, 3} so it won’t be confused with a symbol or with the
number that encodes L.

GOTO NEXT PAGE FOR THE CODING OF THE TM
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Q = {1, 2, 3} (so the number has 23),

Σ = {1, 2, 3},
s = 1 (so the number has 31),

h = 3 (so the number has 53).

δ(1, 1) = (1, L). This is coded by 721315174

δ(1, 2) = (1, 2). This is coded by 1121325172

δ(1, 3) = (2, R). This is coded by 1321335275

δ(2, 1) = (4, 1). This is coded by 1722315471

δ(2, 2) = (3, 3). This is coded by 2322325373

δ(2, 3) = (3, L). This is coded by 2922335374

So the Turing Machine maps to the number

23 × 31 × 53×

721315174 × 1121325172 × 1321335275 × 1722315471 × 2322325373 × 2922335374 .

END OF SOLUTION
GOTO THE NEXT PAGE
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3. (30 points) During this problem we will use M1, . . . ,M100 to mean ANY
100 Turing Machines. They are not associated to any numbering.

HALTON0 is the set of all Turing Machines that halt on input 0.

(a) (10 points) Bill gives you 100 Turing Machines M1, . . . ,M100. He
wants to know if at least 17 of them are in HALTON0.

Come up with a Turing Machine M (by that I mean just write
psuedocode that uses M1, . . . ,M100) so that

M ∈ HALTON0 iff at least 17 of M1, . . . ,M100 are in HALTON0.

(b) (10 points) Bill gives you 100 Turing Machines M1, . . . ,M100. He
wants to know HOW MANY are in HALTON0.

If you could ASK HALTON0 100 questions then you could do
this—just ask M1 ∈ HALTON0?, M2 ∈ HALTON0?,. . ., M100 ∈
HALTON0? and output the number that returned YES.

What if you can ask HALTON0 less than 100 questions? Find
a number q < 100 such that you can determine HOW MANY
are in HALTON0 with q questions to HALTON0. Write psue-
docode (which will make q queries to HALTON0) that will, on in-
put M1, . . . ,M100, output HOW MANY of them are in HALTON0
(so the output is a number between 0 and 100). Try to make q as
small as you can. (HINT: Use part (a).)

(c) (10 points) Bill gives you 100 Turing Machines M1, . . . ,M100. He
wants to know WHICH ONES halt on 0.

If you could ASK HALTON0 100 questions then you could do
this—just ask M1 ∈ HALTON0?, M2 ∈ HALTON0?,. . ., M100 ∈
HALTON0? and see see which ones return YES.

What if you are allowed to ask HALTON0 less than 100 questions?
IS there a number q < 100 such that you can determine WHICH
of M1, . . . ,M100 are in HALTON0 with q questions to HALTON0?
Prove your result.

SOLUTION
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(a) Turing Machine M :

i. Run M1(0), . . . ,M100(0) all at the same time and wait until
17 of them halt.

ii. If you see 17 of them halting, then halt.

Clearly M halts on 0 (actually on any input) IFF ≥ 17 of the Mi’s
halt.

(b) Here is the procedure:

i. Create a TM M such that M halts on 0 IFF at least 50 of
M1, . . . ,M100 halt on 0. (use the technique in part (a)). If
YES then we know ≥ 50 of them halt on 0, if NO then we
know that ≤ 49 of them halt on 0.

ii. Proceed by binary search to find out how many halt on 0.

The number of queries to HALTON0 is dlog2(100)e = 7.

(c) First apply the technique of part (b) to find out HOW MANY
halt on 0. This only took 7 queries. Say the answer is that a of
them halt.

Then RUN ALL OF THEM UNTIL a HALT! Once a halt, you
know which a halt and you know that NO OTHERS will halt. So
we know the a that halt, and that the others DO NOT.

END OF SOLUTION
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