# **Closure Properties of P and NP**

Exposition by William Gasarch—U of MD

・ロト・日本・ヨト・ヨト・日・ つへぐ

# **Closure of P**

#### Exposition by William Gasarch—U of MD

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

**Theorem** If  $L_1 \in P$  and  $L_2 \in P$  then  $L_1 \cup L_2 \in P$ .



**Theorem** If  $L_1 \in P$  and  $L_2 \in P$  then  $L_1 \cup L_2 \in P$ .  $L_1 \in P$  via TM  $M_1$  which works in time  $p_1(n)$ .  $L_2 \in P$  via TM  $M_2$  which works in time  $p_2(n)$ .

**Theorem** If  $L_1 \in P$  and  $L_2 \in P$  then  $L_1 \cup L_2 \in P$ .  $L_1 \in P$  via TM  $M_1$  which works in time  $p_1(n)$ .  $L_2 \in P$  via TM  $M_2$  which works in time  $p_2(n)$ . The following algorithm recognizes  $L_1 \cup L_2$  in poly time.

1. Input(x) (We assume 
$$|x| = n$$
.)

- 2. Run  $M_1(x)$ , output is  $b_1$  (this takes  $p_1(n)$ )
- 3. Run  $M_2(x)$ , output is  $b_2$ , (this takes  $p_2(n)$ )

4. If  $b_1 = Y$  OR  $b_2 = Y$  then output Y, else output N.

**Theorem** If  $L_1 \in P$  and  $L_2 \in P$  then  $L_1 \cup L_2 \in P$ .  $L_1 \in P$  via TM  $M_1$  which works in time  $p_1(n)$ .  $L_2 \in P$  via TM  $M_2$  which works in time  $p_2(n)$ . The following algorithm recognizes  $L_1 \cup L_2$  in poly time.

1. Input(x) (We assume 
$$|x| = n$$
.)

- 2. Run  $M_1(x)$ , output is  $b_1$  (this takes  $p_1(n)$ )
- 3. Run  $M_2(x)$ , output is  $b_2$ , (this takes  $p_2(n)$ )

4. If  $b_1 = Y$  OR  $b_2 = Y$  then output Y, else output N.

This algorithm takes  $\sim p_1(n) + p_2(n)$ , which is poly.

**Theorem** If  $L_1 \in P$  and  $L_2 \in P$  then  $L_1 \cup L_2 \in P$ .  $L_1 \in P$  via TM  $M_1$  which works in time  $p_1(n)$ .  $L_2 \in P$  via TM  $M_2$  which works in time  $p_2(n)$ . The following algorithm recognizes  $L_1 \cup L_2$  in poly time.

1. Input(x) (We assume 
$$|x| = n$$
.)

- 2. Run  $M_1(x)$ , output is  $b_1$  (this takes  $p_1(n)$ )
- 3. Run  $M_2(x)$ , output is  $b_2$ , (this takes  $p_2(n)$ )

4. If  $b_1 = Y$  OR  $b_2 = Y$  then output Y, else output N.

This algorithm takes  $\sim p_1(n) + p_2(n)$ , which is poly. **Note** Key is that the set of polynomials is closed under addition.

**Theorem** If  $L_1 \in P$  and  $L_2 \in P$  then  $L_1 \cap L_2 \in P$ .



**Theorem** If  $L_1 \in P$  and  $L_2 \in P$  then  $L_1 \cap L_2 \in P$ .  $L_1 \in P$  via TM  $M_1$  which works in time  $p_1(n)$ .  $L_2 \in P$  via TM  $M_2$  which works in time  $p_2(n)$ .

**Theorem** If  $L_1 \in P$  and  $L_2 \in P$  then  $L_1 \cap L_2 \in P$ .  $L_1 \in P$  via TM  $M_1$  which works in time  $p_1(n)$ .  $L_2 \in P$  via TM  $M_2$  which works in time  $p_2(n)$ .

The following algorithm recognizes  $L_1 \cup L_2$  in poly time.

- 1. Input(x) (We assume |x| = n.)
- 2. Run  $M_1(x)$ , output is  $b_1$  (this takes  $p_1(n)$ )
- 3. Run  $M_2(x)$ , output is  $b_2$ , (this takes  $p_2(n)$ )

4. If  $b_1 = Y$  AND  $b_2 = Y$  then output Y, else output N.

**Theorem** If  $L_1 \in P$  and  $L_2 \in P$  then  $L_1 \cap L_2 \in P$ .  $L_1 \in P$  via TM  $M_1$  which works in time  $p_1(n)$ .  $L_2 \in P$  via TM  $M_2$  which works in time  $p_2(n)$ .

The following algorithm recognizes  $L_1 \cup L_2$  in poly time.

1. Input(x) (We assume 
$$|x| = n$$
.)

- 2. Run  $M_1(x)$ , output is  $b_1$  (this takes  $p_1(n)$ )
- 3. Run  $M_2(x)$ , output is  $b_2$ , (this takes  $p_2(n)$ )

4. If  $b_1 = Y$  AND  $b_2 = Y$  then output Y, else output N.

This algorithm takes  $\sim p_1(n) + p_2(n)$ , which is poly.

**Theorem** If  $L_1 \in P$  and  $L_2 \in P$  then  $L_1 \cap L_2 \in P$ .  $L_1 \in P$  via TM  $M_1$  which works in time  $p_1(n)$ .  $L_2 \in P$  via TM  $M_2$  which works in time  $p_2(n)$ .

The following algorithm recognizes  $L_1 \cup L_2$  in poly time.

1. Input(x) (We assume 
$$|x| = n$$
.)

- 2. Run  $M_1(x)$ , output is  $b_1$  (this takes  $p_1(n)$ )
- 3. Run  $M_2(x)$ , output is  $b_2$ , (this takes  $p_2(n)$ )

4. If  $b_1 = Y$  AND  $b_2 = Y$  then output Y, else output N.

This algorithm takes  $\sim p_1(n) + p_2(n)$ , which is poly. **Note** Key is that the set of polynomials is closed under addition.

**Theorem** If  $L_1 \in P$  and  $L_2 \in P$  then  $L_1L_2 \in P$ .

**Theorem** If  $L_1 \in P$  and  $L_2 \in P$  then  $L_1L_2 \in P$ .  $L_1 \in P$  via TM  $M_1$  which works in time  $p_1(n)$ .  $L_2 \in P$  via TM  $M_2$  which works in time  $p_2(n)$ .

**Theorem** If  $L_1 \in P$  and  $L_2 \in P$  then  $L_1L_2 \in P$ .  $L_1 \in P$  via TM  $M_1$  which works in time  $p_1(n)$ .  $L_2 \in P$  via TM  $M_2$  which works in time  $p_2(n)$ . The following algorithm recognizes  $L_1 \cup L_2$  in poly time.

- 1. Input(x) (We assume |x| = n.) Let  $x = x_1 \cdots x_n$
- 2. For  $0 \le i \le n$ 
  - 2.1 Run  $M_1(x_1 \cdots x_i)$  and  $M_2(x_{i+1} \cdots x_n)$ . If both say Y then output Y and STOP. (This takes  $p_1(i) + p_2(n-i) \le p_1(n) + p_2(n)$ .

3. Output N

**Theorem** If  $L_1 \in P$  and  $L_2 \in P$  then  $L_1L_2 \in P$ .  $L_1 \in P$  via TM  $M_1$  which works in time  $p_1(n)$ .  $L_2 \in P$  via TM  $M_2$  which works in time  $p_2(n)$ . The following algorithm recognizes  $L_1 \cup L_2$  in poly time.

- 1. Input(x) (We assume |x| = n.) Let  $x = x_1 \cdots x_n$
- 2. For  $0 \le i \le n$ 
  - 2.1 Run  $M_1(x_1 \cdots x_i)$  and  $M_2(x_{i+1} \cdots x_n)$ . If both say Y then output Y and STOP. (This takes  $p_1(i) + p_2(n-i) \le p_1(n) + p_2(n)$ .

3. Output N

This algorithm takes  $\leq (n+1) \times (p_1(n) + p_2(n))$  which is poly.

**Theorem** If  $L_1 \in P$  and  $L_2 \in P$  then  $L_1L_2 \in P$ .  $L_1 \in P$  via TM  $M_1$  which works in time  $p_1(n)$ .  $L_2 \in P$  via TM  $M_2$  which works in time  $p_2(n)$ . The following algorithm recognizes  $L_1 \cup L_2$  in poly time.

- 1. Input(x) (We assume |x| = n.) Let  $x = x_1 \cdots x_n$
- 2. For  $0 \le i \le n$ 
  - 2.1 Run  $M_1(x_1 \cdots x_i)$  and  $M_2(x_{i+1} \cdots x_n)$ . If both say Y then output Y and STOP. (This takes  $p_1(i) + p_2(n-i) \le p_1(n) + p_2(n)$ .

3. Output N

This algorithm takes  $\leq (n + 1) \times (p_1(n) + p_2(n))$  which is poly. **Note** Key is that the set of polynomials is closed under addition and mult by *n*.

・ロト ・西ト ・田ト ・田・ ・ 日・

**Theorem** If  $L \in P$  then  $\overline{L} \in P$ .



**Theorem** If  $L \in P$  then  $\overline{L} \in P$ .  $L \in P$  via TM *M* which works in time p(n).

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

**Theorem** If  $L \in P$  then  $\overline{L} \in P$ .

 $L \in P$  via TM *M* which works in time p(n).

The following algorithm recognizes  $\overline{L}$  in poly time.

1. Input(x) (We assume 
$$|x| = n$$
.)

2. Run M(x). Answer is b.

3. If b = Y then output N, if b = N then output Y.

Run time is  $\sim p(n)$ , a poly.

**Theorem** If  $L \in P$  then  $\overline{L} \in P$ .

 $L \in P$  via TM *M* which works in time p(n).

The following algorithm recognizes  $\overline{L}$  in poly time.

1. Input(x) (We assume 
$$|x| = n$$
.)

2. Run M(x). Answer is b.

3. If b = Y then output N, if b = N then output Y.

Run time is  $\sim p(n)$ , a poly.

Note No note needed.

```
Theorem If L \in P then L^* \in P.
Proof
```

First lets talk about what you should not do.



```
Theorem If L \in P then L^* \in P.
Proof
```

First lets talk about what you should not do.

A contrast

▶  $x \in L_1L_2$ ? Look at n+1 ways to have  $x = z_1z_2$ .

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

```
Theorem If L \in P then L^* \in P.
Proof
```

First lets talk about what you should not do.

#### A contrast

▶  $x \in L_1L_2$ ? Look at n + 1 ways to have  $x = z_1z_2$ .

▶  $x \in L^*$ ? Look at ??? ways to have  $x = z_1 \cdots z_m$ .

```
Theorem If L \in P then L^* \in P.
Proof
```

First lets talk about what you should not do.

A contrast

▶  $x \in L_1L_2$ ? Look at n + 1 ways to have  $x = z_1z_2$ .

▶  $x \in L^*$ ? Look at ??? ways to have  $x = z_1 \cdots z_m$ . Break string into 1 piece:  $\binom{n}{0}$  ways to do this. Break string into 2 pieces:  $\binom{n}{1}$  ways to do this. Break string into 3 piece:  $\binom{n}{2}$  ways to do this.

Break string into *n* piece:  $\binom{n}{n}$  ways to do this.

```
Theorem If L \in P then L^* \in P.
Proof
```

First lets talk about what you should not do.

A contrast

▶  $x \in L_1L_2$ ? Look at n + 1 ways to have  $x = z_1z_2$ .

▶  $x \in L^*$ ? Look at ??? ways to have  $x = z_1 \cdots z_m$ . Break string into 1 piece:  $\binom{n}{0}$  ways to do this. Break string into 2 pieces:  $\binom{n}{1}$  ways to do this. Break string into 3 piece:  $\binom{n}{2}$  ways to do this.

Break string into *n* piece:  $\binom{n}{n}$  ways to do this. So total number of ways to break up the string is

$$\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}.$$

What is another name for this?

**B** is Bill, **D** is Darling.

**B:** D, how many subsets are there of  $\{1, \ldots, n\}$ ?

(ロト (個) (E) (E) (E) (E) のへの

**B** is Bill, **D** is Darling.

- **B:** D, how many subsets are there of  $\{1, \ldots, n\}$ ?
- D: You can either choose 0 elements or choose 1 element, so

**B** is Bill, **D** is Darling.

**B**: D, how many subsets are there of  $\{1, \ldots, n\}$ ?

D: You can either choose 0 elements or choose 1 element, so

$$\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}.$$

**B** is Bill, **D** is Darling.

**B**: D, how many subsets are there of  $\{1, \ldots, n\}$ ?

D: You can either choose 0 elements or choose 1 element, so

$$\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}.$$

**B:** Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so  $2^n$ . Now, You got sum, I got  $2^n$ . What does that mean?

ション ふゆ アメビア メロア しょうくしゃ

**B** is Bill, **D** is Darling.

**B:** D, how many subsets are there of  $\{1, \ldots, n\}$ ?

D: You can either choose 0 elements or choose 1 element, so

$$\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}.$$

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2<sup>n</sup>. Now, You got sum, I got 2<sup>n</sup>. What does that mean?
D: That one of us is wrong.

ション ふゆ アメビア メロア しょうくしゃ

**B** is Bill, **D** is Darling.

**B:** D, how many subsets are there of  $\{1, \ldots, n\}$ ?

D: You can either choose 0 elements or choose 1 element, so

$$\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}.$$

**B:** Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so  $2^n$ . Now, You got sum, I got  $2^n$ . What does that mean?

- **D:** That one of us is wrong.
- B: No. It means our answers are equal:

$$2^n = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n}.$$

ション ふゆ アメビア メロア しょうくしゃ

D: Really! B: Yes, really!

Back to our problem:

The technique of looking at **all** ways to break up x into pieces takes roughly  $2^n$  steps, so we need to do something clever.

Back to our problem:

The technique of looking at **all** ways to break up x into pieces takes roughly  $2^n$  steps, so we need to do something clever. **Dynamic Programming** We solve a harder problem but get lots of information in the process.

Back to our problem:

The technique of looking at **all** ways to break up x into pieces takes roughly  $2^n$  steps, so we need to do something clever. **Dynamic Programming** We solve a harder problem but get lots of information in the process.

**Original Problem** Given  $x = x_1 \cdots x_n$  want to know if  $x \in L^*$ 

Back to our problem:

```
The technique of looking at all ways to break up x into pieces takes roughly 2^n steps, so we need to do something clever. Dynamic Programming We solve a harder problem but get lots of information in the process.
```

```
Original Problem Given x = x_1 \cdots x_n want to know if x \in L^*
New Problem Given x = x_1 \cdots x_n want to know:
```

```
e \in L^*

x_1 \in L^*

x_1x_2 \in L^*

\vdots

x_1x_2 \cdots x_n \in L^*.

Intuition x_1 \cdots x_i \in L^* IFF it can be broken into TWO pieces, the
```

```
first one in L^*, and the second in L.
```

A[i] stores if  $x_1 \cdots x_i$  is in  $L^*$ . *M* is poly-time Alg for *L*, poly *p*.

A[i] stores if  $x_1 \cdots x_i$  is in  $L^*$ . M is poly-time Alg for L, poly p.

Input 
$$x = x_1 \cdots x_n$$
  
 $A[1] = A[2] = \dots = A[n] = \text{FALSE}$   
 $A[0] = \text{TRUE}$   
for  $i = 1$  to  $n$  do  
for  $j = 0$  to  $i - 1$  do  
if  $A[j]$  AND  $M(x_{j+1} \cdots x_i) = Y$  then  $A[i] = \text{TRUE}$   
output  $A[n]$ 

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A[i] stores if  $x_1 \cdots x_i$  is in  $L^*$ . *M* is poly-time Alg for *L*, poly *p*.

Input 
$$x = x_1 \cdots x_n$$
  
 $A[1] = A[2] = ... = A[n] = FALSE$   
 $A[0] = TRUE$   
for  $i = 1$  to  $n$  do  
for  $j = 0$  to  $i - 1$  do  
if  $A[j]$  AND  $M(x_{j+1} \cdots x_i) = Y$  then  $A[i] = TRUE$   
output  $A[n]$ 

 $O(n^2)$  calls to M on inputs of length  $\leq n$ . Runtime  $\leq O(n^2 p(n))$ .

A[i] stores if  $x_1 \cdots x_i$  is in  $L^*$ . *M* is poly-time Alg for *L*, poly *p*.

Input 
$$x = x_1 \cdots x_n$$
  
 $A[1] = A[2] = \dots = A[n] = FALSE$   
 $A[0] = TRUE$   
for  $i = 1$  to  $n$  do  
for  $j = 0$  to  $i - 1$  do  
if  $A[j]$  AND  $M(x_{j+1} \cdots x_i) = Y$  then  $A[i] = TRUE$   
output  $A[n]$ 

 $O(n^2)$  calls to M on inputs of length  $\leq n$ . Runtime  $\leq O(n^2p(n))$ . Note Key is that the set of polynomials is closed under mult by  $n^2$ .

# **Closure of NP**

#### Exposition by William Gasarch—U of MD

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

### Closure of NP under ...

We will now show that NP is closed under  $\cup,$   $\cap,$   $\cdot,$  and \*.



### Closure of NP under ...

We will now show that NP is closed under  $\cup,\ \cap,\ \cdot,$  and \*.

1. Our proofs will use that poly's are closed under stuff, as did the proofs of closure under P. but we will not state this.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

### Closure of NP under ...

We will now show that NP is closed under  $\cup,$   $\cap,$   $\cdot,$  and \*.

- 1. Our proofs will use that poly's are closed under stuff, as did the proofs of closure under P. but we will not state this.
- None of the proofs is anywhere near as hard as the proof that P is closed under \*.

We will now show that NP is closed under  $\cup,$   $\cap,$   $\cdot,$  and \*.

- 1. Our proofs will use that poly's are closed under stuff, as did the proofs of closure under P. but we will not state this.
- None of the proofs is anywhere near as hard as the proof that P is closed under \*.
- 3. Note that we did not include complementation. We'll get to that later.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

**Theorem** If  $L_1 \in NP$  and  $L_2 \in NP$  then  $L_1 \cup L_2 \in NP$ .

**Theorem** If  $L_1 \in NP$  and  $L_2 \in NP$  then  $L_1 \cup L_2 \in NP$ .  $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]$  $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]$ 

**Theorem** If  $L_1 \in NP$  and  $L_2 \in NP$  then  $L_1 \cup L_2 \in NP$ .  $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]$   $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]$ The following defines  $L_1 \cup L_2$  in an NP-way.  $L_1 \cup L_2 = \{x : (\exists y):$ 

▶  $|y| = p_1(|x|) + p_2(|x|) + 1$ .  $y = y_1 \$ y_2$  where  $|y_1| = p_1(|x|)$ and  $|y_2| = p_2(|X|)$ .

► 
$$(x, y_1) \in B_1 \lor (x, y_2) \in B_2$$
)

\_

**Theorem If** 
$$L_1 \in NP$$
 and  $L_2 \in NP$  then  $L_1 \cup L_2 \in NP$ .  
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]$   
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]$   
The following defines  $L_1 \cup L_2$  in an NP-way.  
 $L_1 \cup L_2 = \{x : (\exists y):$   
 $|y| = p_1(|x|) + p_2(|x|) + 1$ .  $y = y_1 \$ y_2$  where  $|y_1| = p_1(|x|)$   
and  $|y_2| = p_2(|X|)$ .  
 $(x, y_1) \in B_1 \lor (x, y_2) \in B_2$ 

Witness:  $|y| = p_1(|x|) + p_2(|x|) + 1$  is short.

Theorem If  $L_1 \in NP$  and  $L_2 \in NP$  then  $L_1 \cup L_2 \in NP$ .  $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]$   $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]$ The following defines  $L_1 \cup L_2$  in an NP-way.  $L_1 \cup L_2 = \{x : (\exists y):$   $|y| = p_1(|x|) + p_2(|x|) + 1$ .  $y = y_1 \$ y_2$  where  $|y_1| = p_1(|x|)$ and  $|y_2| = p_2(|X|)$ .  $(x, y_1) \in B_1 \lor (x, y_2) \in B_2$ 

Witness:  $|y| = p_1(|x|) + p_2(|x|) + 1$  is short. Verification:  $(x, y_1) \in B_1 \lor (x, y_2) \in B_2$ ), is quick.

**Theorem** If  $L_1 \in NP$  and  $L_2 \in NP$  then  $L_1 \cap L_2 \in NP$ .



**Theorem** If  $L_1 \in NP$  and  $L_2 \in NP$  then  $L_1 \cap L_2 \in NP$ .  $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]$  $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]$ 

**Theorem** If  $L_1 \in NP$  and  $L_2 \in NP$  then  $L_1 \cap L_2 \in NP$ .  $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]$  $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]$ 

The following defines  $L_1 \cap L_2$  in an NP-way.  $L_1 \cap L_2 = \{x : (\exists y):$ 

▶  $|y| = p_1(|x|) + p_2(|x|) + 1$ .  $y = y_1 \$ y_2$  where  $|y_1| = p_1(|x|)$ and  $|y_2| = p_2(|X|)$ .

$$\blacktriangleright (x, y_1) \in B_1 \land (x, y_2) \in B_2)$$

**Theorem** If 
$$L_1 \in NP$$
 and  $L_2 \in NP$  then  $L_1 \cap L_2 \in NP$   
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]$   
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]$ 

The following defines  $L_1 \cap L_2$  in an NP-way.  $L_1 \cap L_2 = \{x : (\exists y):$ 

▶  $|y| = p_1(|x|) + p_2(|x|) + 1$ .  $y = y_1 \$ y_2$  where  $|y_1| = p_1(|x|)$ and  $|y_2| = p_2(|X|)$ .

$$\blacktriangleright (x, y_1) \in B_1 \land (x, y_2) \in B_2)$$

Witness:  $|y| = p_1(|x|) + p_2(|x|) + 1$  is short.

**Theorem** If 
$$L_1 \in NP$$
 and  $L_2 \in NP$  then  $L_1 \cap L_2 \in NP$   
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]$   
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]$ 

The following defines  $L_1 \cap L_2$  in an NP-way.  $L_1 \cap L_2 = \{x : (\exists y):$ 

▶  $|y| = p_1(|x|) + p_2(|x|) + 1$ .  $y = y_1 \$ y_2$  where  $|y_1| = p_1(|x|)$ and  $|y_2| = p_2(|X|)$ .

$$\blacktriangleright (x, y_1) \in B_1 \land (x, y_2) \in B_2)$$

Witness:  $|y| = p_1(|x|) + p_2(|x|) + 1$  is short. Verification:  $(x, y_1) \in B_1 \land (x, y_2) \in B_2$ ), is quick.

**Theorem** If  $L_1 \in NP$  and  $L_2 \in NP$  then  $L_1L_2 \in NP$ .



**Theorem** If 
$$L_1 \in NP$$
 and  $L_2 \in NP$  then  $L_1L_2 \in NP$ .  
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]$   
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]$ 

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

**Theorem** If  $L_1 \in NP$  and  $L_2 \in NP$  then  $L_1L_2 \in NP$ .  $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]$  $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]$ 

The following defines  $L_1L_2$  in an NP-way.

$${x: (\exists x_1, x_2, y_1, y_2)}$$

 $x = x_1 x_2$  $|y_1| = p_1(|x_1|)$  $|y_2| = p_2(|x_2|)$  $(x_1, y_1) \in B_1$  $(x_2, y_2) \in B_2$ 

#### **Theorem** If $L \in NP$ then $L^* \in NP$ .

▲□▶▲圖▶▲臣▶▲臣▶ 臣 の�?

**Theorem** If  $L \in NP$  then  $L^* \in NP$ .  $L = \{x : (\exists y)[|y| = p(|x|) \land (x, y) \in B]$ 

The following defines  $L^*$  in an NP-way

$$\{x: (\exists z_1,\ldots,z_k,y_1,\ldots,y_k)\}$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

$$x = z_1 \cdots z_k$$

$$(\forall i)[|y_i| = p(|z_i|]$$

$$(\forall i)[(z_i, y_i) \in B$$

# Is NP closed under Complementation

#### Vote

- 1. There is a proof that if  $L \in NP$  then  $\overline{L} \in NP$ . (Hence NP is closed under complementation and we know this.)
- 2. There is a language  $L \in NP$  with  $\overline{L} \notin NP$ . (Hence NP is not closed under complementation and we know this.)

ション ふゆ アメビア メロア しょうくしゃ

3. The question of whether or not NP is closed under complementation is **Unknown to Science!** 

# Is NP closed under Complementation

#### Vote

- 1. There is a proof that if  $L \in NP$  then  $\overline{L} \in NP$ . (Hence NP is closed under complementation and we know this.)
- 2. There is a language  $L \in NP$  with  $\overline{L} \notin NP$ . (Hence NP is not closed under complementation and we know this.)

ション ふゆ アメビア メロア しょうくしゃ

- 3. The question of whether or not NP is closed under complementation is **Unknown to Science!**
- Answer Unknown to Science!

# What is the Conventional Wisdom (is there one?)

#### Vote

- 1. Most Complexity Theorists think  $\operatorname{NP}$  is closed under complementation.
- 2. Most Complexity Theorists think NP is not closed under complementation.
- 3. There is no real consensus.

Note I have done three polls on what complexity theorists think of P vs NP and related issues, so this is not guesswork on my part.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

# What is the Conventional Wisdom (is there one?)

#### Vote

- 1. Most Complexity Theorists think  $\operatorname{NP}$  is closed under complementation.
- 2. Most Complexity Theorists think NP is not closed under complementation.
- 3. There is no real consensus.

Note I have done three polls on what complexity theorists think of P vs NP and related issues, so this is not guesswork on my part. Most Complexity Theorists think NP is not closed under complementation.

# **Though Experiment**

Most Complexity Theorists think  $\operatorname{NP}$  is not closed under complementation.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

# **Though Experiment**

Most Complexity Theorists think  $\operatorname{NP}$  is not closed under complementation.

Contrast Alice is all powerful, Bob is Poly Time.

- Alice wants to convince Bob that φ ∈ SAT. She can! She gives Bob a satisfying assignment b (which is short) and he can check φ(b) (which is poly time).
- ► Alice wants to convince Bob that φ ∉ SAT. What can she do? Give him the entire truth table. Too long!

It is thought that there is no way for Alice to do this.