
Closure Properties of P and NP

Exposition by William Gasarch—U of MD

Closure of P

Exposition by William Gasarch—U of MD

Closure of P under Union

Theorem If L1 ∈ P and L2 ∈ P then L1 ∪ L2 ∈ P.

L1 ∈ P via TM M1 which works in time p1(n).
L2 ∈ P via TM M2 which works in time p2(n).
The following algorithm recognizes L1 ∪ L2 in poly time.

1. Input(x) (We assume |x | = n.)

2. Run M1(x), output is b1 (this takes p1(n))

3. Run M2(x), output is b2, (this takes p2(n))

4. If b1 = Y OR b2 = Y then output Y, else output N.

This algorithm takes ∼ p1(n) + p2(n), which is poly.
Note Key is that the set of polynomials is closed under addition.

Closure of P under Union

Theorem If L1 ∈ P and L2 ∈ P then L1 ∪ L2 ∈ P.
L1 ∈ P via TM M1 which works in time p1(n).
L2 ∈ P via TM M2 which works in time p2(n).

The following algorithm recognizes L1 ∪ L2 in poly time.

1. Input(x) (We assume |x | = n.)

2. Run M1(x), output is b1 (this takes p1(n))

3. Run M2(x), output is b2, (this takes p2(n))

4. If b1 = Y OR b2 = Y then output Y, else output N.

This algorithm takes ∼ p1(n) + p2(n), which is poly.
Note Key is that the set of polynomials is closed under addition.

Closure of P under Union

Theorem If L1 ∈ P and L2 ∈ P then L1 ∪ L2 ∈ P.
L1 ∈ P via TM M1 which works in time p1(n).
L2 ∈ P via TM M2 which works in time p2(n).
The following algorithm recognizes L1 ∪ L2 in poly time.

1. Input(x) (We assume |x | = n.)

2. Run M1(x), output is b1 (this takes p1(n))

3. Run M2(x), output is b2, (this takes p2(n))

4. If b1 = Y OR b2 = Y then output Y, else output N.

This algorithm takes ∼ p1(n) + p2(n), which is poly.
Note Key is that the set of polynomials is closed under addition.

Closure of P under Union

Theorem If L1 ∈ P and L2 ∈ P then L1 ∪ L2 ∈ P.
L1 ∈ P via TM M1 which works in time p1(n).
L2 ∈ P via TM M2 which works in time p2(n).
The following algorithm recognizes L1 ∪ L2 in poly time.

1. Input(x) (We assume |x | = n.)

2. Run M1(x), output is b1 (this takes p1(n))

3. Run M2(x), output is b2, (this takes p2(n))

4. If b1 = Y OR b2 = Y then output Y, else output N.

This algorithm takes ∼ p1(n) + p2(n), which is poly.

Note Key is that the set of polynomials is closed under addition.

Closure of P under Union

Theorem If L1 ∈ P and L2 ∈ P then L1 ∪ L2 ∈ P.
L1 ∈ P via TM M1 which works in time p1(n).
L2 ∈ P via TM M2 which works in time p2(n).
The following algorithm recognizes L1 ∪ L2 in poly time.

1. Input(x) (We assume |x | = n.)

2. Run M1(x), output is b1 (this takes p1(n))

3. Run M2(x), output is b2, (this takes p2(n))

4. If b1 = Y OR b2 = Y then output Y, else output N.

This algorithm takes ∼ p1(n) + p2(n), which is poly.
Note Key is that the set of polynomials is closed under addition.

Closure of P under Intersection

Theorem If L1 ∈ P and L2 ∈ P then L1 ∩ L2 ∈ P.

L1 ∈ P via TM M1 which works in time p1(n).
L2 ∈ P via TM M2 which works in time p2(n).

The following algorithm recognizes L1 ∪ L2 in poly time.

1. Input(x) (We assume |x | = n.)

2. Run M1(x), output is b1 (this takes p1(n))

3. Run M2(x), output is b2, (this takes p2(n))

4. If b1 = Y AND b2 = Y then output Y, else output N.

This algorithm takes ∼ p1(n) + p2(n), which is poly.
Note Key is that the set of polynomials is closed under addition.

Closure of P under Intersection

Theorem If L1 ∈ P and L2 ∈ P then L1 ∩ L2 ∈ P.
L1 ∈ P via TM M1 which works in time p1(n).
L2 ∈ P via TM M2 which works in time p2(n).

The following algorithm recognizes L1 ∪ L2 in poly time.

1. Input(x) (We assume |x | = n.)

2. Run M1(x), output is b1 (this takes p1(n))

3. Run M2(x), output is b2, (this takes p2(n))

4. If b1 = Y AND b2 = Y then output Y, else output N.

This algorithm takes ∼ p1(n) + p2(n), which is poly.
Note Key is that the set of polynomials is closed under addition.

Closure of P under Intersection

Theorem If L1 ∈ P and L2 ∈ P then L1 ∩ L2 ∈ P.
L1 ∈ P via TM M1 which works in time p1(n).
L2 ∈ P via TM M2 which works in time p2(n).

The following algorithm recognizes L1 ∪ L2 in poly time.

1. Input(x) (We assume |x | = n.)

2. Run M1(x), output is b1 (this takes p1(n))

3. Run M2(x), output is b2, (this takes p2(n))

4. If b1 = Y AND b2 = Y then output Y, else output N.

This algorithm takes ∼ p1(n) + p2(n), which is poly.
Note Key is that the set of polynomials is closed under addition.

Closure of P under Intersection

Theorem If L1 ∈ P and L2 ∈ P then L1 ∩ L2 ∈ P.
L1 ∈ P via TM M1 which works in time p1(n).
L2 ∈ P via TM M2 which works in time p2(n).

The following algorithm recognizes L1 ∪ L2 in poly time.

1. Input(x) (We assume |x | = n.)

2. Run M1(x), output is b1 (this takes p1(n))

3. Run M2(x), output is b2, (this takes p2(n))

4. If b1 = Y AND b2 = Y then output Y, else output N.

This algorithm takes ∼ p1(n) + p2(n), which is poly.

Note Key is that the set of polynomials is closed under addition.

Closure of P under Intersection

Theorem If L1 ∈ P and L2 ∈ P then L1 ∩ L2 ∈ P.
L1 ∈ P via TM M1 which works in time p1(n).
L2 ∈ P via TM M2 which works in time p2(n).

The following algorithm recognizes L1 ∪ L2 in poly time.

1. Input(x) (We assume |x | = n.)

2. Run M1(x), output is b1 (this takes p1(n))

3. Run M2(x), output is b2, (this takes p2(n))

4. If b1 = Y AND b2 = Y then output Y, else output N.

This algorithm takes ∼ p1(n) + p2(n), which is poly.
Note Key is that the set of polynomials is closed under addition.

Closure of Concatenation

Theorem If L1 ∈ P and L2 ∈ P then L1L2 ∈ P.

L1 ∈ P via TM M1 which works in time p1(n).
L2 ∈ P via TM M2 which works in time p2(n).
The following algorithm recognizes L1 ∪ L2 in poly time.

1. Input(x) (We assume |x | = n.) Let x = x1 · · · xn
2. For 0 ≤ i ≤ n

2.1 Run M1(x1 · · · xi) and M2(xi+1 · · · xn). If both say Y then
output Y and STOP. (This takes
p1(i) + p2(n − i) ≤ p1(n) + p2(n).

3. Output N

This algorithm takes ≤ (n + 1)× (p1(n) + p2(n)) which is poly.
Note Key is that the set of polynomials is closed under addition
and mult by n.

Closure of Concatenation

Theorem If L1 ∈ P and L2 ∈ P then L1L2 ∈ P.
L1 ∈ P via TM M1 which works in time p1(n).
L2 ∈ P via TM M2 which works in time p2(n).

The following algorithm recognizes L1 ∪ L2 in poly time.

1. Input(x) (We assume |x | = n.) Let x = x1 · · · xn
2. For 0 ≤ i ≤ n

2.1 Run M1(x1 · · · xi) and M2(xi+1 · · · xn). If both say Y then
output Y and STOP. (This takes
p1(i) + p2(n − i) ≤ p1(n) + p2(n).

3. Output N

This algorithm takes ≤ (n + 1)× (p1(n) + p2(n)) which is poly.
Note Key is that the set of polynomials is closed under addition
and mult by n.

Closure of Concatenation

Theorem If L1 ∈ P and L2 ∈ P then L1L2 ∈ P.
L1 ∈ P via TM M1 which works in time p1(n).
L2 ∈ P via TM M2 which works in time p2(n).
The following algorithm recognizes L1 ∪ L2 in poly time.

1. Input(x) (We assume |x | = n.) Let x = x1 · · · xn
2. For 0 ≤ i ≤ n

2.1 Run M1(x1 · · · xi) and M2(xi+1 · · · xn). If both say Y then
output Y and STOP. (This takes
p1(i) + p2(n − i) ≤ p1(n) + p2(n).

3. Output N

This algorithm takes ≤ (n + 1)× (p1(n) + p2(n)) which is poly.
Note Key is that the set of polynomials is closed under addition
and mult by n.

Closure of Concatenation

Theorem If L1 ∈ P and L2 ∈ P then L1L2 ∈ P.
L1 ∈ P via TM M1 which works in time p1(n).
L2 ∈ P via TM M2 which works in time p2(n).
The following algorithm recognizes L1 ∪ L2 in poly time.

1. Input(x) (We assume |x | = n.) Let x = x1 · · · xn
2. For 0 ≤ i ≤ n

2.1 Run M1(x1 · · · xi) and M2(xi+1 · · · xn). If both say Y then
output Y and STOP. (This takes
p1(i) + p2(n − i) ≤ p1(n) + p2(n).

3. Output N

This algorithm takes ≤ (n + 1)× (p1(n) + p2(n)) which is poly.

Note Key is that the set of polynomials is closed under addition
and mult by n.

Closure of Concatenation

Theorem If L1 ∈ P and L2 ∈ P then L1L2 ∈ P.
L1 ∈ P via TM M1 which works in time p1(n).
L2 ∈ P via TM M2 which works in time p2(n).
The following algorithm recognizes L1 ∪ L2 in poly time.

1. Input(x) (We assume |x | = n.) Let x = x1 · · · xn
2. For 0 ≤ i ≤ n

2.1 Run M1(x1 · · · xi) and M2(xi+1 · · · xn). If both say Y then
output Y and STOP. (This takes
p1(i) + p2(n − i) ≤ p1(n) + p2(n).

3. Output N

This algorithm takes ≤ (n + 1)× (p1(n) + p2(n)) which is poly.
Note Key is that the set of polynomials is closed under addition
and mult by n.

Closure of Complementation

Theorem If L ∈ P then L ∈ P.

L ∈ P via TM M which works in time p(n).

The following algorithm recognizes L in poly time.

1. Input(x) (We assume |x | = n.)

2. Run M(x). Answer is b.

3. If b = Y then output N, if b = N then output Y.

Run time is ∼ p(n), a poly.

Note No note needed.

Closure of Complementation

Theorem If L ∈ P then L ∈ P.
L ∈ P via TM M which works in time p(n).

The following algorithm recognizes L in poly time.

1. Input(x) (We assume |x | = n.)

2. Run M(x). Answer is b.

3. If b = Y then output N, if b = N then output Y.

Run time is ∼ p(n), a poly.

Note No note needed.

Closure of Complementation

Theorem If L ∈ P then L ∈ P.
L ∈ P via TM M which works in time p(n).

The following algorithm recognizes L in poly time.

1. Input(x) (We assume |x | = n.)

2. Run M(x). Answer is b.

3. If b = Y then output N, if b = N then output Y.

Run time is ∼ p(n), a poly.

Note No note needed.

Closure of Complementation

Theorem If L ∈ P then L ∈ P.
L ∈ P via TM M which works in time p(n).

The following algorithm recognizes L in poly time.

1. Input(x) (We assume |x | = n.)

2. Run M(x). Answer is b.

3. If b = Y then output N, if b = N then output Y.

Run time is ∼ p(n), a poly.

Note No note needed.

Closure of P Under *

Theorem If L ∈ P then L∗ ∈ P.
Proof
First lets talk about what you should not do.

A contrast

I x ∈ L1L2? Look at n + 1 ways to have x = z1z2.

I x ∈ L∗? Look at ??? ways to have x = z1 · · · zm.
Break string into 1 piece:

(n
0

)
ways to do this.

Break string into 2 pieces:
(n
1

)
ways to do this.

Break string into 3 piece:
(n
2

)
ways to do this.

...
Break string into n piece:

(n
n

)
ways to do this.

So total number of ways to break up the string is(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

What is another name for this?

Closure of P Under *

Theorem If L ∈ P then L∗ ∈ P.
Proof
First lets talk about what you should not do.
A contrast

I x ∈ L1L2? Look at n + 1 ways to have x = z1z2.

I x ∈ L∗? Look at ??? ways to have x = z1 · · · zm.
Break string into 1 piece:

(n
0

)
ways to do this.

Break string into 2 pieces:
(n
1

)
ways to do this.

Break string into 3 piece:
(n
2

)
ways to do this.

...
Break string into n piece:

(n
n

)
ways to do this.

So total number of ways to break up the string is(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

What is another name for this?

Closure of P Under *

Theorem If L ∈ P then L∗ ∈ P.
Proof
First lets talk about what you should not do.
A contrast

I x ∈ L1L2? Look at n + 1 ways to have x = z1z2.

I x ∈ L∗? Look at ??? ways to have x = z1 · · · zm.

Break string into 1 piece:
(n
0

)
ways to do this.

Break string into 2 pieces:
(n
1

)
ways to do this.

Break string into 3 piece:
(n
2

)
ways to do this.

...
Break string into n piece:

(n
n

)
ways to do this.

So total number of ways to break up the string is(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

What is another name for this?

Closure of P Under *

Theorem If L ∈ P then L∗ ∈ P.
Proof
First lets talk about what you should not do.
A contrast

I x ∈ L1L2? Look at n + 1 ways to have x = z1z2.

I x ∈ L∗? Look at ??? ways to have x = z1 · · · zm.
Break string into 1 piece:

(n
0

)
ways to do this.

Break string into 2 pieces:
(n
1

)
ways to do this.

Break string into 3 piece:
(n
2

)
ways to do this.

...
Break string into n piece:

(n
n

)
ways to do this.

So total number of ways to break up the string is(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

What is another name for this?

Closure of P Under *

Theorem If L ∈ P then L∗ ∈ P.
Proof
First lets talk about what you should not do.
A contrast

I x ∈ L1L2? Look at n + 1 ways to have x = z1z2.

I x ∈ L∗? Look at ??? ways to have x = z1 · · · zm.
Break string into 1 piece:

(n
0

)
ways to do this.

Break string into 2 pieces:
(n
1

)
ways to do this.

Break string into 3 piece:
(n
2

)
ways to do this.

...
Break string into n piece:

(n
n

)
ways to do this.

So total number of ways to break up the string is(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

What is another name for this?

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of {1, . . . , n}?

D: You can either choose 0 elements or choose 1 element, so(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2n. Now,
You got sum, I got 2n. What does that mean?
D: That one of us is wrong.
B: No. It means our answers are equal:

2n =

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

D: Really!
B: Yes, really!

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of {1, . . . , n}?
D: You can either choose 0 elements or choose 1 element, so

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2n. Now,
You got sum, I got 2n. What does that mean?
D: That one of us is wrong.
B: No. It means our answers are equal:

2n =

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

D: Really!
B: Yes, really!

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of {1, . . . , n}?
D: You can either choose 0 elements or choose 1 element, so(

n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2n. Now,
You got sum, I got 2n. What does that mean?
D: That one of us is wrong.
B: No. It means our answers are equal:

2n =

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

D: Really!
B: Yes, really!

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of {1, . . . , n}?
D: You can either choose 0 elements or choose 1 element, so(

n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2n. Now,
You got sum, I got 2n. What does that mean?

D: That one of us is wrong.
B: No. It means our answers are equal:

2n =

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

D: Really!
B: Yes, really!

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of {1, . . . , n}?
D: You can either choose 0 elements or choose 1 element, so(

n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2n. Now,
You got sum, I got 2n. What does that mean?
D: That one of us is wrong.

B: No. It means our answers are equal:

2n =

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

D: Really!
B: Yes, really!

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of {1, . . . , n}?
D: You can either choose 0 elements or choose 1 element, so(

n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2n. Now,
You got sum, I got 2n. What does that mean?
D: That one of us is wrong.
B: No. It means our answers are equal:

2n =

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
.

D: Really!
B: Yes, really!

Back to Our Story

Back to our problem:
The technique of looking at all ways to break up x into pieces
takes roughly 2n steps, so we need to do something clever.

Dynamic Programming We solve a harder problem but get lots
of information in the process.
Original Problem Given x = x1 · · · xn want to know if x ∈ L∗

New Problem Given x = x1 · · · xn want to know:
e ∈ L∗

x1 ∈ L∗

x1x2 ∈ L∗
...
x1x2 · · · xn ∈ L∗.
Intuition x1 · · · xi ∈ L∗ IFF it can be broken into TWO pieces, the
first one in L∗, and the second in L.

Back to Our Story

Back to our problem:
The technique of looking at all ways to break up x into pieces
takes roughly 2n steps, so we need to do something clever.
Dynamic Programming We solve a harder problem but get lots
of information in the process.

Original Problem Given x = x1 · · · xn want to know if x ∈ L∗

New Problem Given x = x1 · · · xn want to know:
e ∈ L∗

x1 ∈ L∗

x1x2 ∈ L∗
...
x1x2 · · · xn ∈ L∗.
Intuition x1 · · · xi ∈ L∗ IFF it can be broken into TWO pieces, the
first one in L∗, and the second in L.

Back to Our Story

Back to our problem:
The technique of looking at all ways to break up x into pieces
takes roughly 2n steps, so we need to do something clever.
Dynamic Programming We solve a harder problem but get lots
of information in the process.
Original Problem Given x = x1 · · · xn want to know if x ∈ L∗

New Problem Given x = x1 · · · xn want to know:
e ∈ L∗

x1 ∈ L∗

x1x2 ∈ L∗
...
x1x2 · · · xn ∈ L∗.
Intuition x1 · · · xi ∈ L∗ IFF it can be broken into TWO pieces, the
first one in L∗, and the second in L.

Back to Our Story

Back to our problem:
The technique of looking at all ways to break up x into pieces
takes roughly 2n steps, so we need to do something clever.
Dynamic Programming We solve a harder problem but get lots
of information in the process.
Original Problem Given x = x1 · · · xn want to know if x ∈ L∗

New Problem Given x = x1 · · · xn want to know:
e ∈ L∗

x1 ∈ L∗

x1x2 ∈ L∗
...
x1x2 · · · xn ∈ L∗.
Intuition x1 · · · xi ∈ L∗ IFF it can be broken into TWO pieces, the
first one in L∗, and the second in L.

Final Algorithm

A[i] stores if x1 · · · xi is in L∗. M is poly-time Alg for L, poly p.

Input x = x1 · · · xn
A[1] = A[2] = ... = A[n] = FALSE
A[0] = TRUE
for i = 1 to n do

for j = 0 to i − 1 do
if A[j] AND M(xj+1 · · · xi) = Y then A[i] = TRUE

output A[n]

O(n2) calls to M on inputs of length ≤ n. Runtime ≤ O(n2p(n)).
Note Key is that the set of polynomials is closed under mult by n2.

Final Algorithm

A[i] stores if x1 · · · xi is in L∗. M is poly-time Alg for L, poly p.

Input x = x1 · · · xn
A[1] = A[2] = ... = A[n] = FALSE
A[0] = TRUE
for i = 1 to n do

for j = 0 to i − 1 do
if A[j] AND M(xj+1 · · · xi) = Y then A[i] = TRUE

output A[n]

O(n2) calls to M on inputs of length ≤ n. Runtime ≤ O(n2p(n)).
Note Key is that the set of polynomials is closed under mult by n2.

Final Algorithm

A[i] stores if x1 · · · xi is in L∗. M is poly-time Alg for L, poly p.

Input x = x1 · · · xn
A[1] = A[2] = ... = A[n] = FALSE
A[0] = TRUE
for i = 1 to n do

for j = 0 to i − 1 do
if A[j] AND M(xj+1 · · · xi) = Y then A[i] = TRUE

output A[n]

O(n2) calls to M on inputs of length ≤ n. Runtime ≤ O(n2p(n)).

Note Key is that the set of polynomials is closed under mult by n2.

Final Algorithm

A[i] stores if x1 · · · xi is in L∗. M is poly-time Alg for L, poly p.

Input x = x1 · · · xn
A[1] = A[2] = ... = A[n] = FALSE
A[0] = TRUE
for i = 1 to n do

for j = 0 to i − 1 do
if A[j] AND M(xj+1 · · · xi) = Y then A[i] = TRUE

output A[n]

O(n2) calls to M on inputs of length ≤ n. Runtime ≤ O(n2p(n)).
Note Key is that the set of polynomials is closed under mult by n2.

Closure of NP

Exposition by William Gasarch—U of MD

Closure of NP under . . .

We will now show that NP is closed under ∪, ∩, ·, and *.

1. Our proofs will use that poly’s are closed under stuff, as did
the proofs of closure under P. but we will not state this.

2. None of the proofs is anywhere near as hard as the proof that
P is closed under *.

3. Note that we did not include complementation. We’ll get to
that later.

Closure of NP under . . .

We will now show that NP is closed under ∪, ∩, ·, and *.

1. Our proofs will use that poly’s are closed under stuff, as did
the proofs of closure under P. but we will not state this.

2. None of the proofs is anywhere near as hard as the proof that
P is closed under *.

3. Note that we did not include complementation. We’ll get to
that later.

Closure of NP under . . .

We will now show that NP is closed under ∪, ∩, ·, and *.

1. Our proofs will use that poly’s are closed under stuff, as did
the proofs of closure under P. but we will not state this.

2. None of the proofs is anywhere near as hard as the proof that
P is closed under *.

3. Note that we did not include complementation. We’ll get to
that later.

Closure of NP under . . .

We will now show that NP is closed under ∪, ∩, ·, and *.

1. Our proofs will use that poly’s are closed under stuff, as did
the proofs of closure under P. but we will not state this.

2. None of the proofs is anywhere near as hard as the proof that
P is closed under *.

3. Note that we did not include complementation. We’ll get to
that later.

Closure of NP under Union

Theorem If L1 ∈ NP and L2 ∈ NP then L1 ∪ L2 ∈ NP.

L1 = {x : (∃y1)[|y1| = p1(|x |) ∧ (x , y1) ∈ B1]
L2 = {x : (∃y2)[|y2| = p2(|x |) ∧ (x , y2) ∈ B2]

The following defines L1 ∪ L2 in an NP-way.
L1 ∪ L2 = {x : (∃y):

I |y | = p1(|x |) + p2(|x |) + 1. y = y1$y2 where |y1| = p1(|x |)
and |y2| = p2(|X |).

I (x , y1) ∈ B1 ∨ (x , y2) ∈ B2)

Witness: |y | = p1(|x |) + p2(|x |) + 1 is short.
Verification: (x , y1) ∈ B1 ∨ (x , y2) ∈ B2), is quick.

Closure of NP under Union

Theorem If L1 ∈ NP and L2 ∈ NP then L1 ∪ L2 ∈ NP.
L1 = {x : (∃y1)[|y1| = p1(|x |) ∧ (x , y1) ∈ B1]
L2 = {x : (∃y2)[|y2| = p2(|x |) ∧ (x , y2) ∈ B2]

The following defines L1 ∪ L2 in an NP-way.
L1 ∪ L2 = {x : (∃y):

I |y | = p1(|x |) + p2(|x |) + 1. y = y1$y2 where |y1| = p1(|x |)
and |y2| = p2(|X |).

I (x , y1) ∈ B1 ∨ (x , y2) ∈ B2)

Witness: |y | = p1(|x |) + p2(|x |) + 1 is short.
Verification: (x , y1) ∈ B1 ∨ (x , y2) ∈ B2), is quick.

Closure of NP under Union

Theorem If L1 ∈ NP and L2 ∈ NP then L1 ∪ L2 ∈ NP.
L1 = {x : (∃y1)[|y1| = p1(|x |) ∧ (x , y1) ∈ B1]
L2 = {x : (∃y2)[|y2| = p2(|x |) ∧ (x , y2) ∈ B2]

The following defines L1 ∪ L2 in an NP-way.
L1 ∪ L2 = {x : (∃y):

I |y | = p1(|x |) + p2(|x |) + 1. y = y1$y2 where |y1| = p1(|x |)
and |y2| = p2(|X |).

I (x , y1) ∈ B1 ∨ (x , y2) ∈ B2)

Witness: |y | = p1(|x |) + p2(|x |) + 1 is short.
Verification: (x , y1) ∈ B1 ∨ (x , y2) ∈ B2), is quick.

Closure of NP under Union

Theorem If L1 ∈ NP and L2 ∈ NP then L1 ∪ L2 ∈ NP.
L1 = {x : (∃y1)[|y1| = p1(|x |) ∧ (x , y1) ∈ B1]
L2 = {x : (∃y2)[|y2| = p2(|x |) ∧ (x , y2) ∈ B2]

The following defines L1 ∪ L2 in an NP-way.
L1 ∪ L2 = {x : (∃y):

I |y | = p1(|x |) + p2(|x |) + 1. y = y1$y2 where |y1| = p1(|x |)
and |y2| = p2(|X |).

I (x , y1) ∈ B1 ∨ (x , y2) ∈ B2)

Witness: |y | = p1(|x |) + p2(|x |) + 1 is short.

Verification: (x , y1) ∈ B1 ∨ (x , y2) ∈ B2), is quick.

Closure of NP under Union

Theorem If L1 ∈ NP and L2 ∈ NP then L1 ∪ L2 ∈ NP.
L1 = {x : (∃y1)[|y1| = p1(|x |) ∧ (x , y1) ∈ B1]
L2 = {x : (∃y2)[|y2| = p2(|x |) ∧ (x , y2) ∈ B2]

The following defines L1 ∪ L2 in an NP-way.
L1 ∪ L2 = {x : (∃y):

I |y | = p1(|x |) + p2(|x |) + 1. y = y1$y2 where |y1| = p1(|x |)
and |y2| = p2(|X |).

I (x , y1) ∈ B1 ∨ (x , y2) ∈ B2)

Witness: |y | = p1(|x |) + p2(|x |) + 1 is short.
Verification: (x , y1) ∈ B1 ∨ (x , y2) ∈ B2), is quick.

Closure of NP under Intersection

Theorem If L1 ∈ NP and L2 ∈ NP then L1 ∩ L2 ∈ NP.

L1 = {x : (∃y1)[|y1| = p1(|x |) ∧ (x , y1) ∈ B1]
L2 = {x : (∃y2)[|y2| = p2(|x |) ∧ (x , y2) ∈ B2]

The following defines L1 ∩ L2 in an NP-way.
L1 ∩ L2 = {x : (∃y):

I |y | = p1(|x |) + p2(|x |) + 1. y = y1$y2 where |y1| = p1(|x |)
and |y2| = p2(|X |).

I (x , y1) ∈ B1 ∧ (x , y2) ∈ B2)

Witness: |y | = p1(|x |) + p2(|x |) + 1 is short.
Verification: (x , y1) ∈ B1 ∧ (x , y2) ∈ B2), is quick.

Closure of NP under Intersection

Theorem If L1 ∈ NP and L2 ∈ NP then L1 ∩ L2 ∈ NP.
L1 = {x : (∃y1)[|y1| = p1(|x |) ∧ (x , y1) ∈ B1]
L2 = {x : (∃y2)[|y2| = p2(|x |) ∧ (x , y2) ∈ B2]

The following defines L1 ∩ L2 in an NP-way.
L1 ∩ L2 = {x : (∃y):

I |y | = p1(|x |) + p2(|x |) + 1. y = y1$y2 where |y1| = p1(|x |)
and |y2| = p2(|X |).

I (x , y1) ∈ B1 ∧ (x , y2) ∈ B2)

Witness: |y | = p1(|x |) + p2(|x |) + 1 is short.
Verification: (x , y1) ∈ B1 ∧ (x , y2) ∈ B2), is quick.

Closure of NP under Intersection

Theorem If L1 ∈ NP and L2 ∈ NP then L1 ∩ L2 ∈ NP.
L1 = {x : (∃y1)[|y1| = p1(|x |) ∧ (x , y1) ∈ B1]
L2 = {x : (∃y2)[|y2| = p2(|x |) ∧ (x , y2) ∈ B2]

The following defines L1 ∩ L2 in an NP-way.
L1 ∩ L2 = {x : (∃y):

I |y | = p1(|x |) + p2(|x |) + 1. y = y1$y2 where |y1| = p1(|x |)
and |y2| = p2(|X |).

I (x , y1) ∈ B1 ∧ (x , y2) ∈ B2)

Witness: |y | = p1(|x |) + p2(|x |) + 1 is short.
Verification: (x , y1) ∈ B1 ∧ (x , y2) ∈ B2), is quick.

Closure of NP under Intersection

Theorem If L1 ∈ NP and L2 ∈ NP then L1 ∩ L2 ∈ NP.
L1 = {x : (∃y1)[|y1| = p1(|x |) ∧ (x , y1) ∈ B1]
L2 = {x : (∃y2)[|y2| = p2(|x |) ∧ (x , y2) ∈ B2]

The following defines L1 ∩ L2 in an NP-way.
L1 ∩ L2 = {x : (∃y):

I |y | = p1(|x |) + p2(|x |) + 1. y = y1$y2 where |y1| = p1(|x |)
and |y2| = p2(|X |).

I (x , y1) ∈ B1 ∧ (x , y2) ∈ B2)

Witness: |y | = p1(|x |) + p2(|x |) + 1 is short.

Verification: (x , y1) ∈ B1 ∧ (x , y2) ∈ B2), is quick.

Closure of NP under Intersection

Theorem If L1 ∈ NP and L2 ∈ NP then L1 ∩ L2 ∈ NP.
L1 = {x : (∃y1)[|y1| = p1(|x |) ∧ (x , y1) ∈ B1]
L2 = {x : (∃y2)[|y2| = p2(|x |) ∧ (x , y2) ∈ B2]

The following defines L1 ∩ L2 in an NP-way.
L1 ∩ L2 = {x : (∃y):

I |y | = p1(|x |) + p2(|x |) + 1. y = y1$y2 where |y1| = p1(|x |)
and |y2| = p2(|X |).

I (x , y1) ∈ B1 ∧ (x , y2) ∈ B2)

Witness: |y | = p1(|x |) + p2(|x |) + 1 is short.
Verification: (x , y1) ∈ B1 ∧ (x , y2) ∈ B2), is quick.

Closure of Concatenation

Theorem If L1 ∈ NP and L2 ∈ NP then L1L2 ∈ NP.

L1 = {x : (∃y1)[|y1| = p1(|x |) ∧ (x , y1) ∈ B1]
L2 = {x : (∃y2)[|y2| = p2(|x |) ∧ (x , y2) ∈ B2]

The following defines L1L2 in an NP-way.

{x : (∃x1, x2, y1, y2)

I x = x1x2
I |y1| = p1(|x1|)
I |y2| = p2(|x2|)
I (x1, y1) ∈ B1

I (x2, y2) ∈ B2

Closure of Concatenation

Theorem If L1 ∈ NP and L2 ∈ NP then L1L2 ∈ NP.
L1 = {x : (∃y1)[|y1| = p1(|x |) ∧ (x , y1) ∈ B1]
L2 = {x : (∃y2)[|y2| = p2(|x |) ∧ (x , y2) ∈ B2]

The following defines L1L2 in an NP-way.

{x : (∃x1, x2, y1, y2)

I x = x1x2
I |y1| = p1(|x1|)
I |y2| = p2(|x2|)
I (x1, y1) ∈ B1

I (x2, y2) ∈ B2

Closure of Concatenation

Theorem If L1 ∈ NP and L2 ∈ NP then L1L2 ∈ NP.
L1 = {x : (∃y1)[|y1| = p1(|x |) ∧ (x , y1) ∈ B1]
L2 = {x : (∃y2)[|y2| = p2(|x |) ∧ (x , y2) ∈ B2]

The following defines L1L2 in an NP-way.

{x : (∃x1, x2, y1, y2)

I x = x1x2
I |y1| = p1(|x1|)
I |y2| = p2(|x2|)
I (x1, y1) ∈ B1

I (x2, y2) ∈ B2

Closure of NP Under *

Theorem If L ∈ NP then L∗ ∈ NP.

L = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]

The following defines L∗ in an NP-way

{x : (∃z1, . . . , zk , y1, . . . , yk)

I x = z1 · · · zk
I (∀i)[|yi | = p(|zi |)
I (∀i)[(zi , yi) ∈ B

Closure of NP Under *

Theorem If L ∈ NP then L∗ ∈ NP.
L = {x : (∃y)[|y | = p(|x |) ∧ (x , y) ∈ B]

The following defines L∗ in an NP-way

{x : (∃z1, . . . , zk , y1, . . . , yk)

I x = z1 · · · zk
I (∀i)[|yi | = p(|zi |)
I (∀i)[(zi , yi) ∈ B

Is NP closed under Complementation

Vote

1. There is a proof that if L ∈ NP then L ∈ NP. (Hence NP is
closed under complementation and we know this.)

2. There is a language L ∈ NP with L /∈ NP. (Hence NP is not
closed under complementation and we know this.)

3. The question of whether or not NP is closed under
complementation is Unknown to Science!

Answer Unknown to Science!

Is NP closed under Complementation

Vote

1. There is a proof that if L ∈ NP then L ∈ NP. (Hence NP is
closed under complementation and we know this.)

2. There is a language L ∈ NP with L /∈ NP. (Hence NP is not
closed under complementation and we know this.)

3. The question of whether or not NP is closed under
complementation is Unknown to Science!

Answer Unknown to Science!

What is the Conventional Wisdom (is there one?)

Vote

1. Most Complexity Theorists think NP is closed under
complementation.

2. Most Complexity Theorists think NP is not closed under
complementation.

3. There is no real consensus.

Note I have done three polls on what complexity theorists think of
P vs NP and related issues, so this is not guesswork on my part.

Most Complexity Theorists think NP is not closed under
complementation.

What is the Conventional Wisdom (is there one?)

Vote

1. Most Complexity Theorists think NP is closed under
complementation.

2. Most Complexity Theorists think NP is not closed under
complementation.

3. There is no real consensus.

Note I have done three polls on what complexity theorists think of
P vs NP and related issues, so this is not guesswork on my part.
Most Complexity Theorists think NP is not closed under
complementation.

Though Experiment

Most Complexity Theorists think NP is not closed under
complementation.

Contrast Alice is all powerful, Bob is Poly Time.

I Alice wants to convince Bob that φ ∈ SAT. She can! She
gives Bob a satisfying assignment ~b (which is short) and he
can check φ(~b) (which is poly time).

I Alice wants to convince Bob that φ /∈ SAT. What can she
do? Give him the entire truth table. Too long!

It is thought that there is no way for Alice to do this.

Though Experiment

Most Complexity Theorists think NP is not closed under
complementation.

Contrast Alice is all powerful, Bob is Poly Time.

I Alice wants to convince Bob that φ ∈ SAT. She can! She
gives Bob a satisfying assignment ~b (which is short) and he
can check φ(~b) (which is poly time).

I Alice wants to convince Bob that φ /∈ SAT. What can she
do? Give him the entire truth table. Too long!

It is thought that there is no way for Alice to do this.

